首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   1篇
化学   52篇
力学   9篇
数学   9篇
物理学   91篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   6篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   11篇
  2007年   4篇
  2006年   11篇
  2005年   9篇
  2004年   9篇
  2003年   6篇
  2002年   6篇
  2001年   6篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有161条查询结果,搜索用时 78 毫秒
101.
A new experimental and numerical method has been developed to characterize the terminal flow behavior of polydisperse, commercial grade polymer melts over a wide dynamic range of time/frequency scales. Experimentally, an MVM rheometer specifically designed for long time scale (t 104 s) creep measurements is used to measure the creep compliance of three commercial polymers: two high density polyethylenes and one polystyrene. The long time scale MVM creep data are complemented in the short time scale regime by creep data from an industrial plate-plate rheometer. The time-dependent creep data is combined and converted to a discrete retardation spectra using a nonlinear regularization algorithm to address the ill-posed nature of the interconversion. The retardation spectrum is analytically converted to dynamic moduli and compared with independently measured dynamic moduli. In the overlapping frequency region, calculations and measurements show excellent agreement and the combined data span a much larger dynamic range than either independent data set. The calculated and measured dynamic moduli data are combined and a retardation spectrum with a vastly expanded dynamic range is generated. Combining long time scale MVM creep compliance data and dynamic moduli data exploits the intrinsic sensitivities of controlled strain and controlled stress rheological experiments and is a powerful means to greatly expand the experimentally accessible dynamic range of time/frequency. This approach is particularly useful for commercial polymers with broad molecular weight distributions and commensurately large distributions of relaxation times.  相似文献   
102.
This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.  相似文献   
103.
Data on the tropospheric degradation of proposed substitutes for ozone depleting CFCs were obtained by conducting photochemical oxidation studies of HCFCs and HFCs using long path Fourier transform infrared spectroscopy. The hydrogen abstraction reactions were initiated using Cl radicals rather than OH radicals because of the rather unreactive nature of the compounds. The experimental product yields at T = 25 ± 3°C and 700 Torr of dry air were: CHClF2 (1.11 ± 0.06 C(O)F2); CClFHCF3 (1.00 ± 0.04 CF3C(O)F); CF3CHF2 (1.09 ± 0.05 C(O)F2); CClF2CH3 (0.98 ± 0.03 C(O)F2); CHF2CH3 (1.00 ± 0.05 C(O)F2); CF3CH2F (0.16 ± 0.03 CF3CF(O), and 0.83 ± 0.22 HFC(O)), where all standard deviations are 2σ. For each compound, the critical step in determining the oxidation products was the decomposition of a halogenated alkoxy radical. For HCFC-22 and HCFC-124, the major alkoxy radical decomposition route was Cl elimination. The HFC-125 product data were consistent with C? C cleavage of a two carbon alkoxy radical as the major decomposition route whereas both C? C cleavage and H abstraction by O2 were significant contributors to the decomposition of the HFC-134a alkoxy radical. Secondary Cl reactions in the HCFC-142b and HFC-152a experiments prevented an unambiguous determination of the decomposition modes; the data are consistent with both C? C bond scission and Cl reactions with halogenated aldehydes producing the oxidation product C(O)F2. With the exception of the HFC-134a and HFC-125 data, the proposed mechanisms can account for the major oxidation products. For HFC-134a and HFC-125, a number of product bands could not be identified. The bands are likely due to products from reactions involving the CF3O2 radical. © John Wiley & Sons, Inc.  相似文献   
104.
A model for the high-frequency backscatter angular response of gassy sediments is proposed. For the interface backscatter contribution we adopted the model developed by Jackson et al. [J. Acoust. Soc. Am. 79, 1410-1422 (1986)], but added modifications to accommodate gas bubbles. The model parameters that are affected by gas content are the density ratio, the sound speed ratio, and the loss parameter. For the volume backscatter contribution we developed a model based on the presence and distribution of gas in the sediment. We treat the bubbles as individual discrete scatterers that sum to the total bubble contribution. This total bubble contribution is then added to the volume contribution of other scatters. The presence of gas affects both the interface and the volume contribution of the backscatter angular response in a complex way that is dependent on both grain size and water depth. The backscatter response of fine-grained gassy sediments is dominated by the volume contribution while that of coarser-grained gassy sediments is affected by both volume and interface contributions. In deep water the interface backscatter is only slightly affected by the presence of gas while the volume scattering is strongly affected. In shallow water the interface backscatter is severely reduced in the presence of gas while the volume backscatter is only slightly increased. Multibeam data acquired offshore northern California at 95 kHz provides raw measurements for the backscatter as a function of grazing angle. These raw backscatter measurements are then reduced to scattering strength for comparison with the results of the proposed model. The analysis of core samples at various locations provides local measurements of physical properties and gas content in the sediments that, when compared to the model, show general agreement.  相似文献   
105.
Room-temperature attenuation measurements are made between lambda=0.8 and 10.0 microm on three GaAs epitaxial samples containing layers of ErAs nanoparticles. An asymmetric attenuation peak is observed around 2.5 microm that increases in strength with ErAs density, and is modeled well by a Maxwell-Garnett formulation and semiclassical transport theory. The nanoparticles are assigned a distribution function of oblate spheroids having a minimum volume corresponding to a 1.0-nm sphere. This is consistent with the self-organizing tendency of ErAs in GaAs, and explains the sharp attenuation peak as a spherical-particle surface-plasmon (i.e., Fr?hlich) resonance.  相似文献   
106.
Hollandite with Cr(III) in both tunnel and framework sites has been prepared hydrothermally from layered manganese oxide precursors.  相似文献   
107.
Second harmonic generation is observed in Si and Ge at electron-hole plasma densities of 1021-1022 cm?3 and found to depend strongly on crystal orientation. We suggest that a lower crystal symmetry within the absorption volume is consistent with a model in which depletion of covalent bond charge, and subsequent lattice softening, is brought about by laser excitation of a high density of electrons into antibonding states.  相似文献   
108.
By using the Born approximation deconvolved inverse scattering method instead of the traditional pulse-echo method for analyzing ultrasound pulse reflections from plastic phantoms and soft tissue specimens, improvement in image resolution is shown to be possible provided these targets are fair approximations to layered media. These images are free of speckle and are more vivid than the usual pulse-echo images.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号