全文获取类型
收费全文 | 50225篇 |
免费 | 15725篇 |
国内免费 | 66篇 |
专业分类
化学 | 58779篇 |
晶体学 | 97篇 |
力学 | 2078篇 |
数学 | 3397篇 |
物理学 | 1665篇 |
出版年
2024年 | 372篇 |
2023年 | 4094篇 |
2022年 | 1453篇 |
2021年 | 2503篇 |
2020年 | 4652篇 |
2019年 | 2347篇 |
2018年 | 2296篇 |
2017年 | 626篇 |
2016年 | 5641篇 |
2015年 | 5583篇 |
2014年 | 5020篇 |
2013年 | 5264篇 |
2012年 | 3399篇 |
2011年 | 1273篇 |
2010年 | 3539篇 |
2009年 | 3487篇 |
2008年 | 1272篇 |
2007年 | 938篇 |
2006年 | 341篇 |
2005年 | 279篇 |
2004年 | 271篇 |
2003年 | 211篇 |
2002年 | 189篇 |
1997年 | 157篇 |
1996年 | 158篇 |
1995年 | 211篇 |
1994年 | 158篇 |
1993年 | 272篇 |
1992年 | 164篇 |
1988年 | 170篇 |
1987年 | 152篇 |
1986年 | 143篇 |
1985年 | 183篇 |
1984年 | 199篇 |
1983年 | 153篇 |
1982年 | 199篇 |
1981年 | 245篇 |
1980年 | 268篇 |
1979年 | 250篇 |
1978年 | 261篇 |
1977年 | 352篇 |
1976年 | 424篇 |
1975年 | 501篇 |
1974年 | 497篇 |
1973年 | 334篇 |
1972年 | 397篇 |
1971年 | 394篇 |
1970年 | 573篇 |
1969年 | 433篇 |
1968年 | 467篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Xiang-Zhu Wei Tian-Yu Ding Dr. Yang Wang Dr. Bing Yang Dr. Qing-Qing Yang Prof. Dr. Shengfa Ye Prof. Dr. Chen-Ho Tung Prof. Dr. Li-Zhu Wu 《Angewandte Chemie (International ed. in English)》2023,62(36):e202308192
High-valent iron-oxo species are appealing for conducting O−O bond formation for water oxidation reactions. However, their high reactivity poses a great challenge to the dissection of their chemical transformations. Herein, we introduce an electron-rich and oxidation-resistant ligand, 2-[(2,2′-bipyridin)-6-yl]propan-2-ol to stabilize such fleeting intermediates. Advanced spectroscopies and electrochemical studies demonstrate a high-valent FeV(O) species formation in water. Combining kinetic and oxygen isotope labelling experiments and organic reactions indicates that the FeV(O) species is responsible for O−O bond formation via water nucleophilic attack under the real catalytic water oxidation conditions. 相似文献
992.
Xiaofang Bai Xiuping Zhang Yujiao Sun Mingcheng Huang Prof. Dr. Jiantao Fan Prof. Dr. Shaoyi Xu Prof. Dr. Hui Li 《Angewandte Chemie (International ed. in English)》2023,62(38):e202308704
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2, our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm−2, suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru. 相似文献
993.
Zejing Xing Xiaodan Gou Prof. Dr. Li-Ping Jiang Prof. Dr. Jun-Jie Zhu Dr. Cheng Ma 《Angewandte Chemie (International ed. in English)》2023,62(39):e202308950
Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)33+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle “cores” before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)33+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment. 相似文献
994.
Dr. Hongshuang Guo Dr. Chen Liang Dr. Tero-Petri Ruoko Dr. Henning Meteling Dr. Bo Peng Dr. Hao Zeng Prof. Arri Priimagi 《Angewandte Chemie (International ed. in English)》2023,62(43):e202309402
Shape-changing polymeric materials have gained significant attention in the field of bioinspired soft robotics. However, challenges remain in versatilizing the shape-morphing process to suit different tasks and environments, and in designing systems that combine reversible actuation and self-healing ability. Here, we report halogen-bonded liquid crystal elastomers (LCEs) that can be arbitrarily shape-programmed and that self-heal under mild thermal or photothermal stimulation. We incorporate halogen-bond-donating diiodotetrafluorobenzene molecules as dynamic supramolecular crosslinks into the LCEs and show that these relatively weak crosslinks are pertinent for their mechanical programming and self-healing. Utilizing the halogen-bonded LCEs, we demonstrate proof-of-concept soft robotic motions such as crawling and rolling with programmed velocities. Our results showcase halogen bonding as a promising, yet unexplored tool for the preparation of smart supramolecular constructs for the development of advanced soft actuators. 相似文献
995.
Dr. Yunxiang Li Dr. Yan Guo Dr. Deyan Luan Prof. Xiaojun Gu Prof. Xiong Wen Lou 《Angewandte Chemie (International ed. in English)》2023,62(44):e202310847
Developing highly efficient catalytic sites for O2 reduction to H2O2, while ensuring the fast injection of energetic electrons into these sites, is crucial for artificial H2O2 photosynthesis but remains challenging. Herein, we report a strongly coupled hybrid photocatalyst comprising polymeric carbon nitride (CN) and a two-dimensional conductive Zn-containing metal–organic framework (Zn-MOF) (denoted as CN/Zn-MOF(lc)/400; lc, low crystallinity; 400, annealing temperature in °C), in which the catalytic capability of Zn-MOF(lc) for H2O2 production is unlocked by the annealing-induced effects. As revealed by experimental and theoretical calculation results, the Zn sites coordinated to four O (Zn-O4) in Zn-MOF(lc) are thermally activated to a relatively electron-rich state due to the annealing-induced local structure shrinkage, which favors the formation of a key *OOH intermediate of 2e− O2 reduction on these sites. Moreover, the annealing treatment facilitates the photoelectron migration from the CN photocatalyst to the Zn-MOF(lc) catalytic unit. As a result, the optimized catalyst exhibits dramatically enhanced H2O2 production activity and excellent stability under visible light irradiation. 相似文献
996.
Hyehwang Kim Dr. Zheng-wang Qu Prof. Dr. Stefan Grimme Nahil Al-Zuhaika Prof. Dr. Douglas W. Stephan 《Angewandte Chemie (International ed. in English)》2023,62(43):e202312587
The phosphino-phosphonium cations of the form [R3PPR′2]+ are labile and provide access to the constituent Lewis acidic and Lewis basic fragments. This permits frustrated Lewis pair-type addition reactions to alkynes, affording unprecedented phosphino-phosphination reactions and giving cations of the form [cis-R3PCHC(R′′)PR′2]+. This reactivity is further adapted to prepare several examples of a rare class of dissymmetric cis-olefin-linked bidentate phosphines. 相似文献
997.
Philip M. Keil Ademola Soyemi Kilian Weisser Prof. Tibor Szilvási Prof. Christian Limberg Dr. Terrance J. Hadlington 《Angewandte Chemie (International ed. in English)》2023,62(19):e202381961
The open-shell cationic stannylene-iron(0) complex 4 ( 4 =[PhiPDippSn⋅Fe⋅IPr]+; PhiPDipp={[Ph2PCH2Si(iPr)2](Dipp)N}; Dipp=2,6-iPr2C6H3; IPr=[(Dipp)NC(H)]2C:) cooperatively and reversibly cleaves dihydrogen at the Sn−Fe interface under mild conditions (1.5 bar, 298 K), in forming bridging hydrido-complex 6 . The One-electron oreduction of the related GeII−Fe0 complex 3 leads to oxidative addition of one C−P linkage of the PhiPDipp ligand in an intermediary Fe−I complex, leading to FeI phosphide species 7 . One-electron reduction reaction of 4 gives access to the iron(−I) ferrato-stannylene, 8 , giving evidence for the transient formation of such a species in the reduction of 3 . The covalently bound tin(II)-iron(−I) compound 8 has been characterised through EPR spectroscopy, SQUID magnetometry, and supporting computational analysis, which strongly indicate a high localization of electron spin density at Fe−I in this unique d9-iron complex. 相似文献
998.
Dr. Yalei Wang Prof. Jun Song Prof. Wai-Yeung Wong 《Angewandte Chemie (International ed. in English)》2023,62(8):e202218343
Two-dimensional metal–organic frameworks (2D MOFs) can be used as the cathodes for high-performance zinc-ion battery due to their large one-dimensional channels. However, the conventionally poor electrical conductivity and low structural stability hinder their advances. Herein, we report an alternately stacked MOF/MX heterostructure, exhibiting the 2D sandwich-like structure with abundant active sites, improved electrical conductivity and exceptional structural stability. Ex situ characterizations and theoretical calculations reveal a reversible intercalation mechanism of zinc ions and high electrical conductivity in the 2D heterostructure. Electrochemical tests confirm excellent Zn2+ migration kinetics and ideal pseudocapacitive behaviors. As a consequence, Cu-HHTP/MX shows a superior rate performance (260.1 mAh g−1 at 0.1 A g−1 and 173.1 mAh g−1 at 4 A g−1) and long-term cycling stability of 92.5 % capacity retention over 1000 cycles at 4 A g−1. 相似文献
999.
Hannah Taylor Dr. Ning Gao Prof. Stephen Mann 《Angewandte Chemie (International ed. in English)》2023,62(24):e202300932
Despite an emerging catalogue of collective behaviours in communities of homogeneously distributed cell-like objects, microscale protocell colonies with spatially segregated populations have received minimal attention. Here, we use microfluidics to fabricate Janus-like calcium alginate hydrogel microspheres with spatially partitioned populations of enzyme-containing inorganic colloidosomes and investigate their potential as integrated platforms for domain-mediated chemical communication and programmable protocell-matrix dynamics. Diffusive chemical signalling within the segregated communities gives rise to increased initial enzyme kinetics compared with a homogeneous distribution of protocells. We employ competing enzyme-mediated hydrogel crosslinking and decrosslinking reactions in different domains of the partitioned colonies to undertake selective expulsion of a specific protocell population from the community. Our results offer new possibilities for the design and construction of spatially organized cytomimetic consortia capable of endogenous chemical processing and protocell-environment interactivity. 相似文献
1000.
Ina Heckelmann Zifei Lu Dr. Joseph C. A. Prentice Dr. Florian Auras Dr. Tanya K. Ronson Prof. Dr. Richard H. Friend Prof. Dr. Jonathan R. Nitschke Dr. Sascha Feldmann 《Angewandte Chemie (International ed. in English)》2023,62(12):e202301806
Organic semiconductors are promising for efficient, printable optoelectronics. However, strong excited-state quenching due to uncontrolled aggregation limits their use in devices. We report on the self-assembly of a supramolecular pseudo-cube formed from six perylene diimides (PDIs). The rigid, shape-persistent cage sets the distance and orientation of the PDIs and suppresses intramolecular rotations and vibrations, leading to non-aggregated, monomer-like properties in solution and the solid state, in contrast to the fast fluorescence quenching in the free ligand. The stabilized excited state and electronic purity in the cage enables the observation of delayed fluorescence due to a bright excited multimer, acting as excited-state reservoir in a rare case of benign inter-chromophore interactions in the cage. We show that self-assembly provides a powerful tool for retaining and controlling the electronic properties of chromophores, and to bring molecular electronics devices within reach. 相似文献