首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49564篇
  免费   16345篇
  国内免费   609篇
化学   57975篇
晶体学   121篇
力学   2312篇
综合类   24篇
数学   3233篇
物理学   2853篇
  2024年   380篇
  2023年   4151篇
  2022年   1596篇
  2021年   2666篇
  2020年   4791篇
  2019年   2465篇
  2018年   2438篇
  2017年   791篇
  2016年   5753篇
  2015年   5709篇
  2014年   5182篇
  2013年   5435篇
  2012年   3556篇
  2011年   1411篇
  2010年   3635篇
  2009年   3613篇
  2008年   1304篇
  2007年   979篇
  2006年   381篇
  2005年   262篇
  2004年   172篇
  2003年   159篇
  2002年   145篇
  2001年   128篇
  1997年   133篇
  1996年   146篇
  1995年   185篇
  1994年   125篇
  1993年   246篇
  1992年   124篇
  1988年   127篇
  1987年   111篇
  1984年   114篇
  1982年   135篇
  1981年   159篇
  1980年   199篇
  1979年   184篇
  1978年   191篇
  1977年   313篇
  1976年   363篇
  1975年   456篇
  1974年   472篇
  1973年   286篇
  1972年   369篇
  1971年   356篇
  1970年   541篇
  1969年   413篇
  1968年   457篇
  1967年   114篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
861.
We develop the chemistry of boron difluoride hydrazone dyes (BODIHYs) bearing two aryl substituents and explore their properties. The low-energy absorption bands (λmax=427–464 nm) of these dyes depend on the nature of the N-aryl groups appended to the BODIHY framework. Electron-donating and extended π-conjugated groups cause a redshift, whereas electron-withdrawing groups result in a blueshift. The title compounds were weakly photoluminescent in solution and strongly photoluminescent as thin films (λPL=525–578 nm) with quantum yields of up to 18 % and lifetimes of 1.1–1.7 ns, consistent with the dominant radiative decay through fluorescence. Addition of water to THF solutions of the BODIHYs studied causes molecular aggregation which restricts intramolecular motion and thereby enhances photoluminescence. The observed photoluminescence of BODIHY thin films is likely facilitated by a similar molecular packing effect. Finally, cyclic voltammetry studies confirmed that BODIHY derivatives bearing para-substituted N-aryl groups could be reversibly oxidized (Eox1=0.62–1.02 V vs. Fc/Fc+) to their radical cation forms. Chemical oxidation studies confirmed that para-substituents at the N-aryl groups are required to circumvent radical decomposition pathways. Our findings provide new opportunities and guiding principles for the design of sought-after multifunctional boron difluoride complexes that are photoluminescent in the solid state.  相似文献   
862.
Lithiation of van der Waals tetrel-arsenides, GeAs and SiAs, has been investigated. Electrochemical lithiation demonstrated large initial capacities of over 950 mAh g−1 accompanied by rapid fading over successive cycling in the voltage range 0.01–2 V. Limiting the voltage range to 0.5–2 V achieved more stable cycling, which was attributed to the intercalation process with lower capacities. Ex situ powder X-ray diffraction confirmed complete amorphization of the samples after lithiation, as well as recrystallization of the binary tetrel-arsenide phases after full delithiation in the voltage range 0.5–2 V. Solid-state synthetic methods produce layered phases, in which Si-As or Ge-As layers are separated by Li cations. The first layered compounds in the corresponding ternary systems were discovered, Li0.9Ge2.9As3.1 and Li3Si7As8, which crystallize in the Pbam (No. 55) and P2/m (No. 10) space groups, respectively. Semiconducting layered GeAs and SiAs accommodate the extra charge from Li cations through structural rearrangement in the Si-As or Ge-As layers and eventually by replacement of the tetrel dumbbells with sets of Li atoms. Ge and Si monoarsenides demonstrated high structural flexibility and a mild ability for reversible lithiation.  相似文献   
863.
In the last decade, experiment and theory have expanded our vision of non-covalent interactions (NCIs), shifting the focus from the conventional hydrogen bond to new bridging interactions involving a variety of weak donor/acceptor partners. Whereas most experimental data originate from condensed phases, the introduction of broadband (chirped-pulse) microwave fast-passage techniques has revolutionized the field of rotational spectroscopy, offering unexplored avenues for high-resolution studies in the gas phase. We present an outlook of hot topics for rotational investigations on isolated intermolecular clusters generated in supersonic jet expansions. Rotational spectra offer very detailed structural data, easily discriminating the isomeric or isotopic composition and effectively cancelling any solvent, crystal, or matrix bias. The direct comparison with quantum mechanical predictions provides insight into the origin of the inter- and intramolecular interactions with much greater precision than any other spectroscopic technique, simultaneously serving as test-bed for fine-tuning of theoretical methods. We present recent examples of rotational investigations around three topics: oligomer formation, chiral recognition, and identification of halogen, chalcogen, pnicogen, or tetrel bonds. The selected examples illustrate the benefits of rotational spectroscopy for the structural and energetic assessment of inter-/intramolecular interactions, which may help to move from fundamental research to applications in supramolecular chemistry and crystal engineering.  相似文献   
864.
865.
Numerous protocols have been developed for the functionalization of aromatic substances. Among them, the strategy by which aromatic substrates are activated in situ to generate dearomatized intermediates is highly efficient but challenging, especially in the field of asymmetric catalysis. In this Concept article, the application of some well-established chiral Lewis base catalysis, including primary/secondary amines and N-heterocyclic carbenes, that can covalently form catalyst-tethered dearomatized ortho/para-quinodimethane species with diverse heteroaryl and aryl carbonyl substrates is summarized in a number of asymmetric cycloaddition and addition reactions with diverse reagents generally having electrophilic properties. As a result, a variety of enantioenriched aromatic products with higher molecular complexity are constructed effectively through a rearomatization process.  相似文献   
866.
The promise of polyhydroxamic acid ligands for the selective chelation of the f-block elements is becoming increasingly more apparent. The initial studies of polyhydroxamic acid siderophores showed the formation of highly stable complexes with PuIV, but a higher preference for FeIII hindered effective applications. The development of synthetic routes toward highly pure and customizable ligands containing multiple hydroxamic acids allowed for the growth of new classes of compounds. Although the first round of these ligands focused on the incorporation of siderophore-like frameworks, the new synthetic strategies led to small molecules of various frameworks and even resins for applications in the field of f-block element separations and biological desorption. Unfortunately, a lack of consistent stability-constant data makes direct comparisons across this body of work difficult. More studies into the stability constants and separations of the f-block elements in a variety of pH ranges is necessary to truly realize the potential for polyhydroxamic acid ligands.  相似文献   
867.
Recent developments and results from the organometallic chemistry of the actinides are reviewed. In the last one and a half years the structural data of about 15 organometallic complexes of transuranium actinides (Np or Pu) have been published, all involving π-ligands in the coordination sphere of the metal ion. On the basis of these data, a comparison of these molecules is presented. Depending on the steric demands of the ligands, effects like the actinide contraction seem to be stronger or weaker in the structural features. This indicates that the interplay between the actinide ion and the π-ligand is rather flexible, enabling the formation of stable bonds over a broad range of actinide ion oxidation states.  相似文献   
868.
Nanoscale metal sulfides are of tremendous potential in biomedicine. Generally, the properties and performances of metal sulfide nanoparticles (NPs) are highly related to their structures, sizes and morphologies. Recently, a strategy of using sulfur-containing protein–metal-ion networks for preparing metal sulfide embedded nanocomposites was proposed. Within the networks, proteins can play multiple roles to drive the transformation of these networks into protein-encapsulated metal sulfide NPs with ultrasmall size and defined structure (as both a template and a sulfur provider) or metal sulfide NP–protein hydrogels with injecting and self-healing properties (as a template, a sulfur provider, and a gelator) in a controlled manner. In this Concept, the synthesis strategy, the formation mechanism, and the biomedical applications of the gained nanocomposites are presented. Moreover, the challenges and opportunities of using protein–metal ion networks to construct functional materials for biomedical applications are analyzed.  相似文献   
869.
Ligands with 1,1′-bis(donor)ferrocene motif are capable of a wide range of binding modes, including the trans chelation mode in which there is a Fe−M interaction (κ3-D,Fe,D), in the form of a dative Fe→TM bond (TM=transition metal). This Minireview will explore the nature of this Fe–TM interaction thorough select examples as well as how to characterize a Fe→TM dative bond using physical, computational, and spectroscopic techniques.  相似文献   
870.
Overuse and misuse of antibacterial drugs has resulted in bacteria resistance and in an increase in mortality rates due to bacterial infections. Therefore, there is an imperative necessity of new antibacterial drugs. Bio-organometallic derivatives of antibacterial agents offer an opportunity to discover new active antibacterial drugs. These compounds are well-characterized products and, in several examples, their antibacterial activities have been studied. Both inhibition of the antibacterial activity and strong increase in the antibiotic activity of the parent drug have been found. The synthesis of the main classes of bio-organometallic derivatives of these drugs, as well as examples of the use of structure–activity relation (SAR) studies to increase the activity and to understand the mode of action of bio-organometallic antimicrobial peptides (BOAMPs) and platensimicyn bio-organometallic mimics is presented in this article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号