首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151789篇
  免费   31559篇
  国内免费   13126篇
化学   126503篇
晶体学   1334篇
力学   8386篇
综合类   764篇
数学   15941篇
物理学   43546篇
  2024年   656篇
  2023年   5371篇
  2022年   5149篇
  2021年   6452篇
  2020年   8376篇
  2019年   6319篇
  2018年   5854篇
  2017年   4106篇
  2016年   10239篇
  2015年   10218篇
  2014年   10939篇
  2013年   12943篇
  2012年   12691篇
  2011年   11002篇
  2010年   10245篇
  2009年   9943篇
  2008年   8164篇
  2007年   7181篇
  2006年   6111篇
  2005年   5086篇
  2004年   3973篇
  2003年   3192篇
  2002年   2924篇
  2001年   2491篇
  2000年   2116篇
  1999年   2188篇
  1998年   1829篇
  1997年   1707篇
  1996年   1697篇
  1995年   1553篇
  1994年   1349篇
  1993年   1251篇
  1992年   1019篇
  1991年   862篇
  1990年   724篇
  1989年   589篇
  1988年   500篇
  1987年   447篇
  1986年   421篇
  1985年   368篇
  1977年   326篇
  1976年   383篇
  1975年   478篇
  1974年   478篇
  1973年   301篇
  1972年   375篇
  1971年   361篇
  1970年   547篇
  1969年   419篇
  1968年   463篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
961.
This work presents a theoretical study of the sound transmission into a finite cylinder under coupled structural and acoustic vibration. Particular attention of this study is focused on evaluating a dimensionless quantity, "noise reduction," for characterizing noise transmission into a small cylindrical enclosure. An analytical expression of the exterior sound pressure resulting from an oblique plane wave impinging upon the cylindrical shell is first presented, which is approximated from the exterior sound pressure for an infinite cylindrical structure. Next, the analytical solution of the interior sound pressure is computed using modal-interaction theory for the coupled structural acoustic system. These results are then used to derive the analytical formula for the noise reduction. Finally, the model is used to predict and characterize the sound transmission into a ChamberCore cylindrical structure, and the results are compared with experimental data. The effects of incidence angle and internal acoustic damping on the sound transmission into the cylinder are also parametrically studied.  相似文献   
962.
We report fabrication and testing of the first phosphate glass microstructured fiber lasers with large Er-Yb-codoped cores. For an 11-cm-long cladding-pumped fiber laser, more than 3 W of continuous wave output power is demonstrated, and near single-mode beam quality is obtained for an active core area larger than 400 microm2.  相似文献   
963.
Cobb MJ  Liu X  Li X 《Optics letters》2005,30(13):1680-1682
We report an approach to achieving continuous focus tracking and a depth-independent transverse resolution for real-time optical coherence tomography (OCT) imaging. Continuous real-time focus tracking is permitted by use of a lateral-priority image acquisition sequence in which the depth-scanning rate is equivalent to the imaging frame rate. Real-time OCT imaging with continuous focus tracking is performed at 1 frame/s by reciprocal translation of a rapid lateral-scanning miniature imaging probe (e.g., an endoscope). The optical path length in the reference arm is scanned synchronously to ensure that the coherence gate coincides with the imaging beam focus. The image quality improvement is experimentally demonstrated by imaging a tissue phantom embedded with polystyrene microspheres and rabbit esophageal tissues.  相似文献   
964.
By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.  相似文献   
965.
The effect on intensity correlation time T by input signal is studied for gain-noise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signal modulation in this paper. By using the linear approximation method, we detect that there exists maximum (i.e., resonance) in the curve of the intensity correlation time T upon bias-current i0 when the noise correlation coefficient λ is positive; and there exists minimum (i.e., suppression) in the T-i0 curve when λ is negative. And when λ is zero, T increases monotonously with increasing i0. Furthermore, the curve of T upon the signal frequency Ω is also studied. Our study shows that no matter what the value ofλ is, there exists minimum (i.e., suppression) in the T-Ω curve.  相似文献   
966.
The resonant third-order susceptibilities at various directions (both parallel and vertical to Z-axis) in self-assembled quantum dots (QDs) have been investigated. The nonlinear susceptibilities associated with the intraband transition in the conduction band are theoretically calculated for wurtzite InxGa1−xN/GaN-strained cylinder QDs. The confined wave functions and energies of electrons in the dots have been calculated in the effective-mass approximation by solving the 3D Schrödinger equation, in which a strong built-in electric field effect due to the piezoelectricity and spontaneous polarization has been taken into account. Furthermore, it is shown that the magnitude and the resonant position of the nonlinear susceptibility χ(3)(3ω) strongly depend on the dots’ size as well as size distribution.  相似文献   
967.
By digital correlation processing of Scanning electronic microscopy (SEM) images, the paper presents the deformation and damage analysis of an energetic material—the plastic-bonded explosive (PBX) on mesoscopic scale. The analysis is made by observing the deformation field resulted from the digital image correlation (DIC) processing of the images corresponding to the loading steps and comparing with the surface profiles of the composite material so as to visualize the matter damage near a preset crack. The results show that the local deformation disturbance can reveal the material damage even happened underneath the specimen surface. The strain distribution in the front of the preset crack, can be used to predict the propagating route of the microcrack initiated from the tip of the pre-crack, which is related to the splitting fracture of the granular-based composite under compressive loading.  相似文献   
968.
In this paper it is shown that the relationship of bulk modulus with pressure, B=f(P), should be linear both at low and high-pressure limiting conditions. Because most of present equations of state (EOS) for solids cannot satisfy such linear relationship at high pressure, a new function f(P) is proposed to satisfy the linearity. By integrating the bulk modulus, an EOS with three parameters and satisfying the quantum-statistics limitation is derived. It is shown that the EOS can be reduced to two-parameter EOS approximately satisfying the limiting condition. By applying the two EOSs and other three typical EOSs to 50 materials, it is concluded that for materials at low and middle-pressure regimes, the limiting condition does not operate, the Baonza EOS gives the best results, but it cannot provide analytic expression for cohesive energy. The Vinet and our second EOSs are slightly inferior, both EOSs can provide analytic expression for cohesive energy, and for materials at high-pressure regimes our second EOS gives the best results. The Holzapfel and our first EOSs give the worst results, although they strictly satisfy the limiting condition. For practical applications, the limiting condition is not important because it only operates as V→0.  相似文献   
969.
The relation between magnetic field topography and operating voltage is investigated in a 1kW Hall thruster discharge channel in order to focus the ion beam effectively and optimize the performance. The curvature of magnetic field line (α) is introduced to characterize the differences of topologies. The optimized magnetic field distribution under each operating voltage is obtained by experiment. Through the curvature transformation, we find that the area of (α > 1) in the channel gradually decreases with the increase of the operating voltage. In response to the results above, two dimensional plasma flows are simulated employing Particle‐in‐Cell method. The distributions of the electric potential, ion density and ion radial velocity are calculated to understand the important influence of the relation above on ion beam focusing. The numerical results indicate that magnetic field curvature and thermal electric field control the ion beam in the ionization and acceleration zone, respectively. The magnetic field topography and discharge voltage interact with each other and together form the focusing electric field. The ion radial mobility is suppressed effectively and the ion beam is focused to the channel centerline. In addition, for a given voltages, when the area of (α > 1) is larger than the optimal scope, the electric potential lines excessively bend to the anode causing ion over focus; contrarily, the electric potential lines will bend to the exit and defocus ions. All these results suggest the relation between magnetic field topography and discharge voltage is important to the ion radial flow control and performance optimization of the Hall thruster (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
970.
The applications of nuclear resonant scattering in laser‐heated diamond anvil cells have provided an important probe for the magnetic and vibrational properties of 57Fe‐bearing materials under high pressure and high temperature. Synchrotron X‐ray diffraction is one of the most powerful tools for studying phase stability and equation of state over a wide range of pressure and temperature conditions. Recently an experimental capability has been developed for simultaneous nuclear resonant scattering and X‐ray diffraction measurements using synchrotron radiation. Here the application of this method to determine the sound velocities of compressed Fe3C is shown. The X‐ray diffraction measurements allow detection of microscale impurities, phase transitions and chemical reactions upon compression or heating. They also provide information on sample pressure, grain size distribution and unit cell volume. By combining the Debye velocity extracted from the nuclear resonant inelastic X‐ray scattering measurements and the structure, density and elasticity data from the X‐ray diffraction measurements simultaneously obtained, more accurate sound velocity data can be derived. Our results on few‐crystal and powder samples indicate strong anisotropy in the sound velocities of Fe3C under ambient conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号