首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45535篇
  免费   15681篇
  国内免费   55篇
化学   55426篇
晶体学   54篇
力学   2029篇
数学   2637篇
物理学   1125篇
  2024年   372篇
  2023年   4084篇
  2022年   1432篇
  2021年   2473篇
  2020年   4619篇
  2019年   2307篇
  2018年   2273篇
  2017年   592篇
  2016年   5564篇
  2015年   5518篇
  2014年   4937篇
  2013年   5119篇
  2012年   3177篇
  2011年   1016篇
  2010年   3399篇
  2009年   3357篇
  2008年   1027篇
  2007年   744篇
  2006年   109篇
  2005年   91篇
  1997年   85篇
  1995年   145篇
  1994年   87篇
  1993年   212篇
  1992年   97篇
  1988年   120篇
  1987年   99篇
  1986年   86篇
  1985年   107篇
  1984年   111篇
  1983年   104篇
  1982年   132篇
  1981年   159篇
  1980年   203篇
  1979年   189篇
  1978年   190篇
  1977年   313篇
  1976年   363篇
  1975年   458篇
  1974年   475篇
  1973年   287篇
  1972年   369篇
  1971年   355篇
  1970年   541篇
  1969年   413篇
  1968年   456篇
  1967年   115篇
  1966年   90篇
  1965年   85篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The synthesis of a Ni-nitrilotriacetic acid (Ni-NTA) attached via a new tyrosine-based linker matrix on monolithic crosslinked poly(vinyl benzyl chloride)/poly(vinylpyrrolidinone) is described. This matrix is incorporated inside a microstructured PASSflow reactor which was used for automatic purification and immobilisation of His(6)-tagged proteins. These could be used as stable and highly active biocatalysts for the synthesis of (R)-benzoin (6), (R)-2-hydroxy-1-phenylpropan-1-one (7) and 6-O-acetyl-D-glucal (17) in a flow-through mode.  相似文献   
993.
994.
The efficient, regioselective synthesis of functionalized/annulated quinolines was achieved by the coupling of 2‐aminoaryl ketones with alkynes/active methylenes/α‐oxoketene dithioacetals promoted by InCl3 in refluxing acetonitrile as well as under solvent‐free conditions in excellent yields. This transformation presumably proceeded through the hydroamination–hydroarylation of alkynes, and the Friedländer annulation of active methylene compounds and α‐oxoketene dithioacetals with 2‐aminoarylketones. In addition, simple reductive and oxidative cyclization of 2‐nitrobenzaldehyde and 2‐aminobenzylalcohol, respectively, afforded substituted quinolines. Systematic optimization of the reaction parameters allowed us to identify two‐component coupling (2CC) conditions that were tolerant of a wide range of functional groups, thereby providing densely functionalized/annulated quinolines. This approach tolerates the synthesis of various bioactive quinoline frameworks from the same 2‐aminoarylketones under mild conditions, thus making this strategy highly useful in diversity‐oriented synthesis (DOS). The scope and limitations of the alkyne‐, activated methylene‐, and α‐oxoketene dithioacetal components on the reaction were also investigated.  相似文献   
995.
Local interactions between (bio)chemicals and biological interfaces play an important role in fields ranging from surface patterning to cell toxicology. These interactions can be studied using microfluidic systems that operate in the “open space”, that is, without the need for the sealed channels and chambers commonly used in microfluidics. This emerging class of techniques localizes chemical reactions on biological interfaces or specimens without imposing significant “constraints” on samples, such as encapsulation, pre‐processing steps, or the need for scaffolds. They therefore provide new opportunities for handling, analyzing, and interacting with biological samples. The motivation for performing localized chemistry is discussed, as are the requirements imposed on localization techniques. Three classes of microfluidic systems operating in the open space, based on microelectrochemistry, multiphase transport, and hydrodynamic flow confinement of liquids are presented.  相似文献   
996.
The antitumor prodrug temozolomide (TMZ) decomposes in aqueous medium of pH≥7 but is relatively stable under acidic conditions. Pure TMZ is obtained as a white powder but turns pink and then brown, which is indicative of chemical degradation. Pharmaceutical cocrystals of TMZ were engineered with safe coformers such as oxalic acid, succinic acid, salicylic acid, d,l ‐malic acid, and d,l ‐tartaric acid, to stabilize the drug as a cocrystal. All cocrystals were characterized by powder X‐ray diffraction (PXRD), single crystal X‐ray diffraction, and FT‐IR as well as FT‐Raman spectroscopy. Temozolomide cocrystals with organic acids (pKa 2–6) were found to be more stable than the reference drug under physiological conditions. The half‐life (T1/2) of TMZ–oxalic and TMZ–salicylic acid measured by UV/Vis spectroscopy in pH 7 buffer is two times longer than that of TMZ (3.5 h and 3.6 h vs. 1.7 h); TMZ–succinic acid, TMZ–tartaric acid, and TMZ–malic acid also exhibited a longer half‐life (2.3, 2.5, and 2.8 h, respectively). Stability studies at 40 °C and 75 % relative humidity (ICH conditions) showed that hydrolytic degradation of temozolomide in the solid state started after one week, as determined by PXRD, whereas its cocrystals with succinic acid and oxalic acid were intact at 28 weeks, thus confirming the greater stability of cocrystals compared to the reference drug. The intrinsic dissolution rate (IDR) profile of TMZ–oxalic acid and TMZ–succinic acid cocrystals in buffer of pH 7 is comparable to that of temozolomide. Among the temozolomide cocrystals examined, those with succinic acid and oxalic acid exhibited both an improved stability and a comparable dissolution rate to the reference drug.  相似文献   
997.
Combining meta‐triphenylamine or triphenylphosphine with three anthracene fluorophores gives rise to fluorescent non‐planar triskelions 1 and 2 . The emissive properties of 1 are highly solvatochromic, yielding blue to pale green and even pale yellow fluorescence, whereas the blue emission of 2 is solvent‐insensitive. Anthracene trimers 1 and 2 are both emissive in the solid state, displaying yellow and pale green fluorescence, respectively, with moderate quantum yields.  相似文献   
998.
We report herein for the first time the incorporation of a versatile organocatalyst, 4‐(N,N‐dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the “bottom‐up” approach. The resulting DMAP‐NCP material possesses highly concentrated and homogeneously distributed DMAP catalytic sites (2.02 mmol g?1). DMAP‐NCP also exhibits enhanced stability and permanent porosity due to the strong covalent linkage and the rigidity of the “bottom‐up” monomers. As a result, DMAP‐NCP shows excellent catalytic activity in the acylation of alcohols with yields of 92–99 %. The DMAP‐NCP catalyst could be easily recovered from the reaction mixture and reused in at least 14 consecutive cycles without measurable loss of activity. Moreover, the catalytic acylation reaction could be performed under neat and continuous‐flow conditions for at least 536 h of continuous work with the same catalyst activity.  相似文献   
999.
An asymmetric synthesis of densely functionalized 7–11‐membered carbocycles and 9–11‐membered lactones has been developed. Its key steps are a modular assembly of sulfoximine‐substituted C‐ and O‐tethered trienes and C‐tethered dienynes and their Ru‐catalyzed ring‐closing diene and enyne metathesis (RCDEM and RCEYM). The synthesis of the C‐tethered trienes and dienynes includes the following steps: 1) hydroxyalkylation of enantiomerically pure titanated allylic sulfoximines with unsaturated aldehydes, 2) α‐lithiation of alkenylsulfoximines, 3) alkylation, hydroxy‐alkylation, formylation, and acylation of α‐lithioalkenylsulfoximines, and 4) addition of Grignard reagents to α‐formyl(acyl)alkenylsulfoximines. The sulfoximine group provided for high asymmetric induction in steps 1) and 4). RCDEM of the sulfoximine‐substituted trienes with the second‐generation Ru catalyst stereoselectively afforded the corresponding functionalized 7–11‐membered carbocyles. RCDEM of diastereomeric silyloxy‐substituted 1,6,12‐trienes revealed an interesting difference in reactivity. While the (R)‐diastereomer gave the 11‐membered carbocyle, the (S)‐diastereomer delivered in a cascade of cross metathesis and RCDEM 22‐membered macrocycles. RCDEM of cyclic trienes furnished bicyclic carbocycles with a bicyclo[7.4.0]tridecane and bicyclo[9.4.0]pentadecane skeleton. Selective transformations of the sulfoximine‐ and bissilyloxy‐substituted carbocycles were performed including deprotection, cross‐coupling reaction and reduction of the sulfoximine moiety. Esterification of a sulfoximine‐substituted homoallylic alcohol with unsaturated carboxylic acids gave the O‐tethered trienes, RCDEM of which yielded the sulfoximine‐substituted 9–11‐membered lactones. RCEYM of a sulfoximine‐substituted 1,7‐dien‐10‐yne showed an unprecedented dichotomy in ring formation depending on the Ru catalyst. While the second‐generation Ru catalyst gave the 9‐membered exo 1,3‐dienyl carbocycle, the first‐generation Ru catalyst furnished a truncated 9‐membered 1,3‐dieny carbocycle having one CH2 unit less than the dienyne.  相似文献   
1000.
In the ion/molecule reactions of the cyclometalated platinum complexes [Pt(L? H)]+ (L=2,2′‐bipyridine (bipy), 2‐phenylpyridine (phpy), and 7,8‐benzoquinoline (bq)) with linear and branched alkanes CnH2n+2 (n=2–4), the main reaction channels correspond to the eliminations of dihydrogen and the respective alkenes in varying ratios. For all three couples [Pt(L? H)]+/C2H6, loss of C2H4 dominates clearly over H2 elimination; however, the mechanisms significantly differs for the reactions of the “rollover”‐cyclometalated bipy complex and the classically cyclometalated phpy and bq complexes. While double hydrogen‐atom transfer from C2H6 to [Pt(bipy? H)]+, followed by ring rotation, gives rise to the formation of [Pt(H)(bipy)]+, for the phpy and bq complexes [Pt(L? H)]+, the cyclometalated motif is conserved; rather, according to DFT calculations, formation of [Pt(L? H)(H2)]+ as the ionic product accounts for C2H4 liberation. In the latter process, [Pt(L? H)(H2)(C2H4)]+ (that carries H2 trans to the nitrogen atom of the heterocyclic ligand) serves, according to DFT calculation, as a precursor from which, due to the electronic peculiarities of the cyclometalated ligand, C2H4 rather than H2 is ejected. For both product‐ion types, [Pt(H)(bipy)]+ and [Pt(L? H)(H2)]+ (L=phpy, bq), H2 loss to close a catalytic dehydrogenation cycle is feasible. In the reactions of [Pt(bipy? H)]+ with the higher alkanes CnH2n+2 (n=3, 4), H2 elimination dominates over alkene formation; most probably, this observation is a consequence of the generation of allyl complexes, such as [Pt(C3H5)(bipy)]+. In the reactions of [Pt(L? H)]+ (L=phpy, bq) with propane and n‐butane, the losses of the alkenes and dihydrogen are of comparable intensities. While in the reactions of “rollover”‐cyclometalated [Pt(bipy? H)]+ with CnH2n+2 (n=2–4) less than 15 % of the generated product ions are formed by C? C bond‐cleavage processes, this value is about 60 % for the reaction with neo‐pentane. The result that C? C bond cleavage gains in importance for this substrate is a consequence of the fact that 1,2‐elimination of two hydrogen atoms is no option; this observation may suggest that in the reactions with the smaller alkanes, 1,1‐ and 1,3‐elimination pathways are only of minor importance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号