首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78382篇
  免费   19305篇
  国内免费   1460篇
化学   87384篇
晶体学   393篇
力学   2533篇
数学   5065篇
物理学   3772篇
  2024年   374篇
  2023年   4105篇
  2022年   1511篇
  2021年   2717篇
  2020年   5870篇
  2019年   4904篇
  2018年   2658篇
  2017年   1260篇
  2016年   7404篇
  2015年   7467篇
  2014年   6947篇
  2013年   7808篇
  2012年   5362篇
  2011年   3081篇
  2010年   5353篇
  2009年   5246篇
  2008年   3315篇
  2007年   2469篇
  2006年   1680篇
  2005年   1899篇
  2004年   1607篇
  2003年   1477篇
  2002年   2123篇
  2001年   1422篇
  2000年   1322篇
  1999年   402篇
  1997年   135篇
  1996年   146篇
  1995年   169篇
  1994年   119篇
  1993年   250篇
  1988年   141篇
  1987年   128篇
  1985年   129篇
  1984年   126篇
  1982年   149篇
  1981年   166篇
  1980年   208篇
  1979年   199篇
  1978年   197篇
  1977年   316篇
  1976年   365篇
  1975年   459篇
  1974年   482篇
  1973年   287篇
  1972年   372篇
  1971年   356篇
  1970年   543篇
  1969年   414篇
  1968年   456篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
In this contribution, we demonstrate a new effective methodology for constructing highly efficient and durable poly(p‐phenyleneethynylene) (PPE) containing emissive material with nonaggregating and hole‐facilitating properties through the introduction of hole‐transporting blocks into the PPE system as the grafting coils as well as building the energy donor–acceptor architecture between the grafting coils and the PPE backbone. Poly(2‐(carbazol‐9‐yl)ethyl methacrylate) (PCzEMA), herein, is chosen as the hole‐transporting blocks, and incorporated into the PPE system as the grafting coils via atom transfer radical polymerization. The chemical structure of the resultant copolymer, PPE‐g‐PCzEMA, was characterized by NMR and gel permeation chromatography, showing that the desirable copolymer was obtained with the narrow polydispersity. The increased thermal stability of PPE‐g‐PCzEMA was confirmed by thermogravimetric analysis and differential scanning calorimetry along with its macroinitiator. The optoelectronic properties of this copolymer were studied in detail by ultraviolet‐visible absorption, photoluminescence emission and excitation spectra, and cyclic voltammogram (CV). The results indicate that PPE‐g‐PCzEMA exhibits the solid‐state luminescent property dominated by individual lumophores, and also the energy transfer process from the PCzEMA blocks to the PPE backbone with a relatively higher energy transfer efficiency in the solid‐state compared to that of the solution state. Additionally, the hole‐injection property is greatly facilitated due to the presence of PCzEMA, as confirmed by CV profiles. All these data indicate that PPE‐g‐PCzEMA is a good candidate for use in optoelectronic devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3776–3787, 2007  相似文献   
112.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   
113.
Spatio temporal dynamics of the positive column of a dc neon glow discharge is studied and investigated experimentally and theoretically. Spatio temporal analysis by means of biorthogonal decomposition method (BOD) gives insights into the mechanism of irregularity and can be employed for characterization of spatio‐ temporal complexity. In the weak nonlinear region, the wave dynamics is approximated by an amplitude equation of the Ginzburg‐Landau equation (CGLE) with complex coefficients and an additional integral term based on a fluid model. In the present work we deal with irregular spatio‐temporal data. A comparison between the numerical analysis of the experimental data and simulation results are studied. A good agreement between the dynamical behaviour for experimental space‐time data and theoretical simulation space‐time results was obtained. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
114.
Three novel functionalized polynorbornenes (PNB) with pendant dimethyl carboxylate group (carboxylates—acetate, propionate, and butyrate) are synthesized as a vinyl‐type with a palladium (II) catalyst in high yield. The effects of size of substitutents, molar ratio of monomer to catalyst, solvent polarity, reaction time, and temperature on the polymerization of exo‐norbornene dimethyl propionate were systematically investigated. The low molar ratio and temperature, as well as high polarity of solvent, and long reaction time, are favorable for the enhancement of the monomer conversion, especially, the solvent have an obvious effect on the catalyst activity. The resulting poly(cis‐norbornene‐exo‐2,3‐dimethyl carboxylates) (PNB‐dimethyl carboxylates) show good solubility in common organic solvent and high thermal stability up to 360 °C. The glass transition temperature was detected by DMA at 331, 324, and 318 °C for acetate, propionate, and butyrate, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3391–3399, 2007  相似文献   
115.
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006  相似文献   
116.
The cycloterpolymerizations of single‐, twin‐, and triple‐tailed hydrophobes with hydrophilic monomer N,N‐diallyl‐N‐carboethoxymethylammonium chloride and sulfur dioxide afforded a series of cationic polyelectrolytes (CPEs) in excellent yields. These CPEs, upon the acidic hydrolysis of the pendent ester groups, gave the corresponding pH‐responsive cationic acid salts, which, upon a treatment with sodium hydroxide, were converted to polybetaines (PBs), anionic polyelectrolytes (APEs), and PB/APE polymers containing various proportions of zwitterionic (PB) and anionic fractions (APE) in the polymer chain. At a shear rate of 0.36 s−1 at 30 °C, salt‐free water solutions of the CPEs (2 g/dL) containing 8, 4, and 2.67 mol % of the single‐, twin‐, and triple‐tailed hydrophobes (all having 8 mol % octyloxy tails) had apparent viscosity values of 70, 2800, and 396,000 cps, respectively. The PB/APE polymer with a ratio of 33:67 for the zwitterionic and anionic fractions in the polymer chain gave the highest viscosity value. The superior viscosity behavior of the polymers containing the triple‐tailed hydrophobe was attributed to the blocky nature of the comonomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5480–5494, 2006  相似文献   
117.
Five novel fluorene‐containing polymers, poly[(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA1 ), poly[(1‐pentyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene) ( PFA2 ), poly[1‐decyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA3 ), poly[1‐phenyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA4 ), and poly[1‐(3,4‐difluorophenyl)‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA5 ) were synthesized by the polymerization of the corresponding fluorene‐substituted acetylenic monomers ( M1–M5), using WCl6, MoCl5, and TaCl5 as catalysts and n‐Bu4Sn as a cocatalyst. The synthesized polymers were thermally stable and readily soluble in common organic solvents. The degradation temperatures for a 5% weight loss of the polymers were ∼352–503 °C under nitrogen. PFA1–PFA5 show emission peaks from 402 to 590 nm. Besides, their electroluminescent properties were studied in heterostructure light‐emitting diodes (LEDs), using PFA2–PFA5 as an emitting layer. The PFA5 device revealed an orange‐red emission peak at 602 nm with a maximum luminescence of 923 cd/m2 at 8 V. A device with the ITO/PEDOT/ a mixture of PFA2 (98 wt %) and PFA5 (2 wt %)/Ca/Al showed near white emission. Its maximum luminance and current efficiency are 450 cd/m2 at 15 V and 1.3 cd/A, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 519–531, 2006  相似文献   
118.
Crosslinked polymeric materials, which exhibit thermal remendability and removability through Diels–Alder (DA) and retro‐DA reactions, were obtained from using multifunctional maleimide and furan compounds as monomers. The synthesized monomers possess low melting points and good solubility in organo solvents to show excellent processing properties. The performance of DA and retro‐DA reactions were demonstrated with DSC and FTIR measurements. High performance of thermal remendablility and removability of the crosslinked materials were observed with SEM and solvent tests. These materials were applicable in advanced encapsulants and structural materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 905–913, 2006  相似文献   
119.
Two series of novel fluorinated poly(ether imide)s (coded IIIA and IIIB ) were prepared from 2,6‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride and 2,7‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride, respectively, with various trifluoromethyl‐substituted aromatic bis(ether amine)s by a standard two‐step process with thermal or chemical imidization of the poly(amic acid) precursors. These fluorinated poly(ether imide)s showed good solubility in many organic solvents and could be solution‐cast into transparent, flexible, and tough films. These films were nearly colorless, with an ultraviolet–visible absorption edge of 364–386 nm. They also showed good thermal stability with glass‐transition temperatures of 221–298 °C, 10% weight loss temperatures in excess of 489 °C, and char yields at 800 °C in nitrogen greater than 50%. The 2,7‐substituted IIIB series also showed better solubility and higher transparency than the isomeric 2,6‐substituted IIIA series. In comparison with nonfluorinated poly (ether imide)s, the fluorinated IIIA and IIIB series showed better solubility, higher transparency, and lower dielectric constants and water absorption. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5909–5922, 2006  相似文献   
120.
A new class of thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing pendant epoxide groups were synthesized and characterized. These new epoxy polymers were prepared through the bromination of poly(2,6‐dimethyl‐1,4‐phenylene oxide) in halogenated aromatic hydrocarbons followed by a Wittig reaction to yield vinyl‐substituted polymer derivatives. The treatment of the vinyl‐substituted polymers with m‐chloroperbenzoic acid led to the formation of epoxidized poly(2,6‐dimethyl‐1,4‐phenylene oxide) with variable pendant ratios, and the structures and properties were studied with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The ratios of pendant functional groups were tailored for the polymer properties, and the results showed that the glass‐transition temperatures increased as the benzylic protons were replaced by bromo‐, vinyl‐, or epoxide‐functional groups, whereas the thermal stability decreased in comparison with the original polymer. Within a molar fraction of 20–50%, the degree of functionalization had little effect on the glass‐transition temperature; however, it correlated inversely with the thermal stability of each functionalized polymer. The thermal curing behavior of the epoxide‐functionalized polymer was enhanced by the increment of the pendant functionality, which resulted in a significant increase in the glass‐transition temperature as well as the thermal stability after the curing reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5875–5886, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号