首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78613篇
  免费   16090篇
  国内免费   319篇
化学   77595篇
晶体学   326篇
力学   2711篇
综合类   1篇
数学   8560篇
物理学   5829篇
  2024年   387篇
  2023年   4152篇
  2022年   1682篇
  2021年   2785篇
  2020年   5021篇
  2019年   2808篇
  2018年   2595篇
  2017年   947篇
  2016年   6263篇
  2015年   6122篇
  2014年   5705篇
  2013年   6598篇
  2012年   5211篇
  2011年   3431篇
  2010年   4564篇
  2009年   4368篇
  2008年   3227篇
  2007年   2788篇
  2006年   2207篇
  2005年   2030篇
  2004年   1731篇
  2003年   1416篇
  2002年   1367篇
  2001年   522篇
  2000年   489篇
  1999年   434篇
  1998年   420篇
  1997年   496篇
  1996年   522篇
  1995年   452篇
  1994年   451篇
  1993年   534篇
  1992年   399篇
  1985年   473篇
  1984年   436篇
  1982年   469篇
  1981年   430篇
  1980年   481篇
  1979年   424篇
  1978年   416篇
  1977年   523篇
  1976年   564篇
  1975年   634篇
  1974年   630篇
  1973年   404篇
  1972年   448篇
  1971年   406篇
  1970年   590篇
  1969年   438篇
  1968年   473篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
993.
994.
995.
996.
997.
Phthalocyanines have been used as photodynamic therapy (PDT) agents because of their uniquely favorable optical properties and high photostability. They have been shown to be highly successful for the treatment of cancer through efficient singlet‐oxygen (1O2) production. However, due to their hydrophobic properties, the considerations of solubility and cellular location have made understanding their photophysics in vitro and in vivo difficult. Indeed, many quantitative assessments of PDT reagents are undertaken in purely organic solvents, presenting challenges for interpreting observations during practical application in vivo. With steady‐state and time‐resolved laser spectroscopy, we show that for axial ligated silicon phthalocyanines in aqueous media, both the water:lipophile ratio and the pH have drastic effects on their photophysics, and ultimately dictate their functionality as PDT drugs. We suggest that considering the presented photophysics for PDT drugs in aqueous solutions leads to guidelines for a next generation of even more potent PDT agents.  相似文献   
998.
In condensed phases, a highly symmetric gas‐phase molecule lowers its symmetry under perturbation of the solvent, which is vital to a variety of structural chemistry related processes. However, the dynamical aspects of solvent‐mediated symmetry‐breaking events remain largely unknown. Herein, direct evidence for two types of solvent‐mediated symmetry‐breaking events that coexist on the picosecond timescale in a highly symmetric anion, namely, hexacyanocobaltate, is presented: 1) an equilibrium symmetry‐breaking event in which a solvent‐bound species having lowered symmetry undergoes a population exchange reaction with the symmetry‐retaining species; 2) a dynamic symmetry‐breaking event that is composed of many dynamic population‐exchange reactions under fluctuating solvent interactions. Ultrafast two‐dimensional infrared spectroscopy is used to simultaneously observe and dynamically characterize these two events. This work opens a new window into molecular symmetry and structural dynamics under equilibrium and non‐equilibrium conditions.  相似文献   
999.
The structure and stability of adenine crystals and thin layers has been studied by using scanning tunneling microscopy, X‐ray diffraction, and density functional theory calculations. We have found that adenine crystals can be grown in two phases that are energetically quasi‐degenerate, the structure of which can be described as a pile‐up of 2D adenine planes. In each plane, the structure can be described as an aggregation of adenine dimers. Under certain conditions, kinetic effects can favor the growth of the less stable phase. These results have been used to understand the growth of adenine thin films on gold under ultra‐high vacuum conditions. We have found that the grown phase corresponds to the α‐phase, which is composed of stacked prochiral planes. In this way, the adenine nanocrystals exhibit a surface that is enantiopure. These results could open new insight into the applications of adenine in biological, medical, and enantioselective or pharmaceutical fields.  相似文献   
1000.
Halogen bonding is a noncovalent interaction that is receiving rapidly increasing attention because of its significance in biological systems and its importance in the design of new materials in a variety of areas, for example, electronics, nonlinear optical activity, and pharmaceuticals. The interactions can be understood in terms of electrostatics/polarization and dispersion; they involve a region of positive electrostatic potential on a covalently bonded halogen and a negative site, such as the lone pair of a Lewis base. The positive potential, labeled a σ hole, is on the extension of the covalent bond to the halogen, which accounts for the characteristic near‐linearity of halogen bonding. In many instances, the lateral sides of the halogen have negative electrostatic potentials, allowing it to also interact favorably with positive sites. In this discussion, after looking at some of the experimental observations of halogen bonding, we address the origins of σ holes, the factors that govern the magnitudes of their electrostatic potentials, and the properties of the resulting complexes with negative sites. The relationship of halogen and hydrogen bonding is examined. We also point out that σ‐hole interactions are not limited to halogens, but can also involve covalently bonded atoms of Groups IV–VI. Examples of applications in biological/medicinal chemistry and in crystal engineering are mentioned, taking note that halogen bonding can be “tuned” to fit various requirements, that is, strength of interaction, steric factors, and so forth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号