首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59382篇
  免费   17544篇
  国内免费   1388篇
化学   64900篇
晶体学   225篇
力学   2858篇
综合类   67篇
数学   4396篇
物理学   5868篇
  2024年   407篇
  2023年   4267篇
  2022年   1964篇
  2021年   3023篇
  2020年   5153篇
  2019年   2850篇
  2018年   2704篇
  2017年   1018篇
  2016年   6163篇
  2015年   6150篇
  2014年   5611篇
  2013年   6121篇
  2012年   4378篇
  2011年   2246篇
  2010年   4179篇
  2009年   4137篇
  2008年   1965篇
  2007年   1556篇
  2006年   834篇
  2005年   768篇
  2004年   558篇
  2003年   460篇
  2002年   438篇
  2001年   361篇
  2000年   309篇
  1999年   320篇
  1998年   219篇
  1997年   235篇
  1996年   273篇
  1995年   304篇
  1994年   221篇
  1993年   332篇
  1992年   198篇
  1991年   152篇
  1988年   177篇
  1987年   147篇
  1981年   174篇
  1980年   206篇
  1979年   192篇
  1978年   192篇
  1977年   313篇
  1976年   371篇
  1975年   467篇
  1974年   473篇
  1973年   286篇
  1972年   374篇
  1971年   362篇
  1970年   546篇
  1969年   418篇
  1968年   458篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The use of a carbazolyl-connected di-gold(I) metallotweezer for the encapsulation of several electron-poor organic substrates, and a planar Au(III) complex containing a CNC pincer ligand, is described. The binding affinity of the receptor depends on the electron-deficient character of the planar guest, with larger association constants found for the more electron-poor guests. The X-ray diffraction molecular structures of two host:guest adducts show that the host approaches its arms in order to facilitate the optimum interaction with the surface of the planar guests, in a clear example of an guest-induced fit conformational arrangement. The electrochemical studies of the encapsulation of N,N’-dimethyl-naphthalenetetracarboxy diimide (NTCDI) show that the redox active guest is released from the receptor upon one electron reduction, thus constituting an example of redox-switchable binding.  相似文献   
982.
One of the most applied reaction types to synthesize shape-persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n-hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.  相似文献   
983.
A six-step synthesis towards a tribenzotriquinacene (TBTQ) bearing three quinoxalinophenanthrophenazine (QPP) units is presented. The optoelectronic properties are investigated and the effect of the three-dimensional arrangement of the individual QPP planes is examined using optical spectroscopy, electrochemical analysis and quantum-chemical calculations.  相似文献   
984.
Commercial LiAlH4 can be used in catalytic quantities in the hydrogenation of imines to amines with H2. Combined experimental and theoretical investigations give deeper insight in the mechanism and identifies the most likely catalytic cycle. Activity is lost when Li in LiAlH4 is exchanged for Na or K. Exchanging Al for B or Ga also led to dramatically reduced activities. This indicates a heterobimetallic mechanism in which cooperation between Li and Al is crucial. Potential intermediates on the catalytic pathway have been isolated from reactions of MAlH4 (M=Li, Na, K) and different imines. Depending on the imine, double, triple or quadruple imine insertion has been observed. Prolonged reaction of LiAlH4 with PhC(H)=NtBu led to a side-reaction and gave the double insertion product LiAlH2[N]2 ([N]=N(tBu)CH2Ph) which at higher temperature reacts further by ortho-metallation of the Ph ring. A DFT study led to a number of conclusions. The most likely catalyst for hydrogenation of PhC(H)=NtBu with LiAlH4 is LiAlH2[N]2. Insertion of a third imine via a heterobimetallic transition state has a barrier of +23.2 kcal mol−1H). The rate-determining step is hydrogenolysis of LiAlH[N]3 with H2 with a barrier of +29.2 kcal mol−1. In agreement with experiment, replacing Li for Na (or K) and Al for B (or Ga) led to higher calculated barriers. Also, the AlH4 anion showed very high barriers. Calculations support the experimentally observed effects of the imine substituents at C and N: the lowest barriers are calculated for imines with aryl-substituents at C and alkyl-substituents at N.  相似文献   
985.
Two structural isomers containing five second-row element atoms with 24 valence electrons were generated and identified by matrix-isolation IR spectroscopy and quantum chemical calculations. The OCBNO complex, which is produced by the reaction of boron atoms with mixtures of carbon monoxide and nitric oxide in solid neon, rearranges to the more stable OBNCO isomer on UV excitation. Bonding analysis indicates that the OCBNO complex is best described by the bonding interactions between a triplet-state boron cation with an electron configuration of (2s)0(2pσ)0(2pπ)2 and the CO/NO ligands in the triplet state forming two degenerate electron-sharing π bonds and two ligand-to-boron dative σ bonds.  相似文献   
986.
The involvement of silver in two-electron AgI/AgIII processes is currently emerging. However, the range of stability of the required and uncommon AgIII species is virtually unknown. Here, the stability of AgIII towards the whole set of halide ligands in the organosilver(III) complex frame [(CF3)3AgX] (X=F, Cl, Br, I, At) is theoretically analyzed. The results obtained depend on a single factor: the nature of X. Even the softest and least electronegative halides (I and At) are found to form reasonably stable AgIII−X bonds. Our estimates were confirmed by experiment. The whole series of nonradiative halide complexes [PPh4][(CF3)3AgX] (X=F, Cl, Br, I) has been experimentally prepared and all its constituents have been isolated in pure form. The pseudohalides [PPh4][(CF3)3AgCN] and [PPh4][(CF3)3Ag(N3)] have also been isolated, the latter being the first silver(III) azido complex. Except for the iodo compound, all the crystal and molecular structures have been established by single-crystal X-ray diffraction methods. The decomposition paths of the [(CF3)3AgX] entities at the unimolecular level have been examined in the gas phase by multistage mass spectrometry (MSn). The experimental detection of the two series of mixed complexes [CF3AgX] and [FAgX] arising from the corresponding parent species [(CF3)3AgX] demonstrate that the Ag−X bond is particularly robust. Our experimental observations are rationalized with the aid of theoretical methods. Smooth variation with the electronegativity of X is also observed in the thermolyses of bulk samples. The thermal stability in the solid state gradually decreases from X=F (145 °C, dec.) to X=I (78 °C, dec.) The experimentally established compatibility of AgIII with the heaviest halides is of particular relevance to silver-mediated or silver-catalyzed processes.  相似文献   
987.
The full series of quasibinary alkali-metal selenocyanates was synthesized either by oxidation of the respective cyanides (A=Li−Rb) or by metathesis (A=Cs). For Li[SeCN] only ball-milling and subsequent annealing led to the isolation of the quasibinary selenocyanate. Their structures were refined from single-crystal and powder X-ray data. The respective solid-state IR and Raman spectra were interpreted with the aid of solid-state quantum-mechanical calculations and DSC-TGA measurements allowed for extraction of melting points. Only for Li[SeCN] a possible phase transition was observed that is discussed on the basis of VT-PXRD experiments. It is also the only quasibinary selenocyanate to form a hydrate (Li[SeCN] ⋅ 2H2O).  相似文献   
988.
Alkali-metal ferrates containing amide groups have emerged as regioselective bases capable of promoting Fe−H exchanges of aromatic substrates. Advancing this area of heterobimetallic chemistry, a new series of sodium ferrates is introduced incorporating the bulky arylsilyl amido ligand N(SiMe3)(Dipp) (Dipp=2,6-iPr2-C6H3). Influenced by the large steric demands imposed by this amide, transamination of [NaFe(HMDS)3] (HMDS=N(SiMe3)2) with an excess of HN(SiMe3)(Dipp) led to the isolation of heteroleptic [Na(HMDS)2Fe{N(SiMe3)Dipp}] ( 1 ) resulting from the exchange of just one HMDS group. An alternative co-complexation approach, combining the homometallic metal amides [NaN(SiMe3)Dipp] and [Fe{N(SiMe3)Dipp}2] induces lateral metallation of one Me arm from the SiMe3 group in the iron amide furnishing tetrameric [NaFe{N(SiCH2Me2)Dipp}{N(SiMe3)Dipp}]4 ( 2 ). Reactivity studies support that this deprotonation is driven by the steric incompatibility of the single metal amides rather than the basic capability of the sodium reagent. Displaying synergistic reactivity, heteroleptic sodium ferrate 1 can selectively promote ferration of pentafluorobenzene using one of its HMDS arms to give heterotrileptic [Na{N(SiMe3)Dipp}(HMDS)Fe(C6F5)] ( 4 ). Attempts to deprotonate less activated pyridine led to the isolation of NaHMDS and heteroleptic Fe(II) amide [(py)Fe{N(SiMe3)Dipp}(HMDS)] ( 5 ), resulting from an alternative redistribution process which is favoured by the Lewis donor ability of this substrate.  相似文献   
989.
We have quantum chemically analyzed element−element bonds of archetypal HnX−YHn molecules (X, Y=C, N, O, F, Si, P, S, Cl, Br, I), using density functional theory. One purpose is to obtain a set of consistent homolytic bond dissociation energies (BDE) for establishing accurate trends across the periodic table. The main objective is to elucidate the underlying physical factors behind these chemical bonding trends. On one hand, we confirm that, along a period (e. g., from C−C to C−F), bonds strengthen because the electronegativity difference across the bond increases. But, down a period, our findings constitute a paradigm shift. From C−F to C−I, for example, bonds do become weaker, however, not because of the decreasing electronegativity difference. Instead, we show that the effective atom size (via steric Pauli repulsion) is the causal factor behind bond weakening in this series, and behind the weakening in orbital interactions at the equilibrium distance. We discuss the actual bonding mechanism and the importance of analyzing this mechanism as a function of the bond distance.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号