首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64150篇
  免费   6052篇
  国内免费   18篇
化学   62948篇
晶体学   107篇
力学   2122篇
综合类   1篇
数学   3051篇
物理学   1991篇
  2024年   382篇
  2023年   4192篇
  2022年   2468篇
  2021年   4006篇
  2020年   6509篇
  2019年   4124篇
  2018年   2303篇
  2017年   648篇
  2016年   5639篇
  2015年   5607篇
  2014年   4998篇
  2013年   5247篇
  2012年   3282篇
  2011年   1169篇
  2010年   3465篇
  2009年   3405篇
  2008年   1114篇
  2007年   848篇
  2006年   205篇
  2005年   153篇
  2004年   146篇
  2003年   113篇
  1997年   126篇
  1996年   118篇
  1995年   182篇
  1994年   134篇
  1993年   245篇
  1992年   135篇
  1988年   143篇
  1987年   126篇
  1985年   167篇
  1984年   139篇
  1983年   123篇
  1982年   157篇
  1981年   194篇
  1980年   222篇
  1979年   210篇
  1978年   219篇
  1977年   350篇
  1976年   386篇
  1975年   481篇
  1974年   499篇
  1973年   305篇
  1972年   387篇
  1971年   369篇
  1970年   552篇
  1969年   428篇
  1968年   493篇
  1967年   129篇
  1963年   119篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
291.
    
Secondary structures tend to be recognizable because they have repeating structural motifs, but mimicry of these does not have to follow such well-defined patterns. Bioinformatics studies to match side-chain orientations of a novel hydantoin triazole chemotype ( 1 ) to protein-protein interfaces revealed it tends to align well across parallel and antiparallel sheets, like rungs on a ladder. One set of these overlays was observed for the protein-protein interaction uPA⋅uPAR. Consequently, chemotype 1 was made with appropriate side-chains to mimic uPA at this interface. Biophysical assays indicate these compounds did in fact bind uPAR, and elicit cellular responses that affected invasion, migration, and wound healing.  相似文献   
292.
Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.  相似文献   
293.
    
Single-atom catalysts have drawn great attention, especially in electrocatalysis. However, most of previous works focus on the enhanced catalytic properties via improving metal loading. Engineering morphologies of catalysts to facilitate mass transport through catalyst layers, thus increasing the utilization of each active site, is regarded as an appealing way for enhanced performance. Herein, we design an overhang-eave structure decorated with isolated single-atom iron sites via a silica-mediated MOF-templated approach for oxygen reduction reaction (ORR) catalysis. This catalyst demonstrates superior ORR performance in both alkaline and acidic electrolytes, comparable to the state-of-the-art Pt/C catalyst and superior to most precious-metal-free catalysts reported to date. This activity originates from its edge-rich structure, having more three-phase boundaries with enhanced mass transport of reactants to accessible single-atom iron sites (increasing the utilization of active sites), which verifies the practicability of such a synthetic approach.  相似文献   
294.
Metal–organic frameworks (MOFs) have limited applications in electrochemistry owing to their poor conductivity. Now, an electroactive MOF (E-MOF) is designed as a highly crystallized electrochemiluminescence (ECL) emitter in aqueous medium. The E-MOF contains mixed ligands of hydroquinone and phenanthroline as oxidative and reductive couples, respectively. E-MOFs demonstrate excellent performance with surface state model in both co-reactant and annihilation ECL in aqueous medium. Compared with the individual components, E-MOFs significantly improve the ECL emission due to the framework structure. The self-enhanced ECL emission with high stability is realized by the accumulation of MOF cation radicals via pre-reduction electrolysis. The self-enhanced mechanism is theoretically identified by DFT. The mixed-ligand E-MOFs provide a proof of concept using molecular crystalline materials as new ECL emitters for fundamental mechanism studies.  相似文献   
295.
π-Stacked polymers, which consist of layered π-electron systems in a polymer, can be expected to be used in molecular electronic devices. However, the construction of a stable π-stacked structure in a polymer is considerably challenging because it requires sophisticated designs and precise synthetic methods. Herein, we present a novel π-stacked architecture based on poly(quinolylene-2,3-methylene) bearing alanine derivatives as the side chain, obtained through the living cyclo-copolymerization of an o-allenylaryl isocyanide. In the resulting polymer, the neighboring quinoline rings of the main chain form a layered structure with π–π interactions, which is stabilized by intramolecular hydrogen bonds. The vicinal quinoline units form two independent helices and the whole molecule is a twisted-tape structure. This structure is established on the basis of UV/CD spectra, theoretical calculations, and atomic-force microscopy.  相似文献   
296.
297.
298.
Inhibition of phospholipase A2 (PLA2) has long been considered for treating various diseases associated with an elevated PLA2 activity. However, safe and effective PLA2 inhibitors remain unavailable. Herein, we report a biomimetic nanoparticle design that enables a “lure and kill” mechanism designed for PLA2 inhibition (denoted “L&K-NP”). The L&K-NPs are made of polymeric cores wrapped with modified red blood cell membrane with two inserted key components: melittin and oleyloxyethyl phosphorylcholine (OOPC). Melittin acts as a PLA2 attractant that works together with the membrane lipids to “lure” in-coming PLA2 for attack. Meanwhile, OOPC acts as inhibitor that “kills” PLA2 upon enzymatic attack. Both compounds are integrated into the L&K-NP structure, which voids toxicity associated with free molecules. In the study, L&K-NPs effectively inhibit PLA2-induced hemolysis. In mice administered with a lethal dose of venomous PLA2, L&K-NPs also inhibit hemolysis and confer a significant survival benefit. Furthermore, L&K-NPs show no obvious toxicity in mice. and the design provides a platform technology for a safe and effective anti-PLA2 approach.  相似文献   
299.
    
Continued efforts are made for the utilization of CO2 as a C1 feedstock for regeneration of valuable chemicals and fuels. Mechanistic study of molecular (electro-/photo-)catalysts disclosed that initial step for CO2 activation involves either nucleophilic insertion or direct reduction of CO2. In this study, nucleophilic activation of CO2 by complex [(NO)2Fe(μ-MePyr)2Fe(NO)2]2− ( 2 , MePyr=3-methylpyrazolate) results in the formation of CO2-captured complex [(NO)2Fe(MePyrCO2)] ( 2-CO2 , MePyrCO2=3-methyl-pyrazole-1-carboxylate). Single-crystal structure, spectroscopic, reactivity, and computational study unravels 2-CO2 as a unique intermediate for reductive transformation of CO2 promoted by Ca2+. Moreover, sequential reaction of 2 with CO2, Ca(OTf)2, and KC8 established a synthetic cycle, 2 → 2-CO2 → [(NO)2Fe(μ-MePyr)2Fe(NO)2] ( 1 ) → 2 , for selective conversion of CO2 into oxalate. Presumably, characterization of the unprecedented intermediate 2-CO2 may open an avenue for systematic evaluation of the effects of alternative Lewis acids on reduction of CO2.  相似文献   
300.
    
Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2(323))]BPh4, 1. The first at 250 K, involves the space group change CcPc and is thermodynamically continuous, while the second, PcP1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号