Switching characteristics: The 633 nm wavelength of an He–Ne laser is used to fabricate holographic transmission gratings in polymer‐dispersed liquid‐crystal cells. The microstructure and diffraction efficiency (η) both improve with increasing functionality (see figure). For functionalities of 2.5 or more, η approaches 34 % and can be switched off with electric fields of about 20 MV m?1.
A pigment of your imagination : A range of polycrystalline solid solutions of a zinc‐rich Znx?1MnxO system (see figure) have been prepared and studied in terms of their colour, diffuse reflectance spectra, Mn valence state and electronic structure. The intense optical absorption arises from Mn2+ doping and is thought to be due to forbidden or partially forbidden transitions between the valence and the conduction band.
Flower power : Various mesoporous Co3O4 architectural structures (see figure) have been successfully prepared through a facile binary‐solution route and sequential thermal decomposition at atmospheric pressure. The electrochemical experiments showed that the specific capacitance of Co3O4 nanosheets was higher than that of Co3O4 microspheres in a KOH electrolyte.
Novel dendrimers G2PC and G4PC consisting of a p‐pentaphenylene core ( PC ) appended in the para position with two second‐generation ( G2 ) or two fourth‐generation ( G4 ) sulfonimide branches and two n‐octyl chains, as well as a model compound of the pentaphenylene core ( G0PC ), are prepared. The photophysical properties (absorption, emission, and excitation spectra; fluorescence decay lifetime; and fluorescence anisotropy spectra) of the three compounds are investigated under different experimental conditions (dichloromethane solution and solid state at 293 K, dichloromethane/methanol rigid matrix at 77 K). In the absorption spectra contributions from both the branches and the core can be clearly identified. The fluorescence spectra show only the characteristic fluorescence of the pentaphenylene unit with λmax around 410 nm in fluid solution and 420 nm in the solid state. In solution the fluorescence quantum yields are 0.78, 0.76, and 0.72 for G0PC , G2PC , and G4PC , respectively, and the fluorescence lifetime is about 0.7 ns in all cases. Energy transfer from the chromophoric groups of the dendrimer branches to the core does not occur. The three compounds show the same, high steady‐state anisotropy value (0.35) in dilute rigid‐matrix solution at 77 K. In dichloromethane at 293 K, the increasing anisotropy values along the series G0PC (0.17), G2PC (0.27), and G4PC (0.32), with increasing molecular volume of the three compounds, show that depolarization takes place by molecular rotation. In the solid state the anisotropy is very low (0.015, 0.017, and 0.035 for G0PC , G2PC , and G4PC , respectively), probably because of fast depolarization via energy migration. 相似文献
You can append on me! Porphyrin‐appended polynorbornenes derived from 5,6‐endo‐fused N‐arylpyrrolidenonorbornenes have been shown to have coherently aligned pendant groups that exhibit exciton coupling and fluorescence quenching in the absorption and emission profiles (see figure).
A series of hydrogen‐abstraction barriers of a nonheme iron(IV)–oxo oxidant mimicking the active species of taurine/α‐ketoglutarate dioxygenase (TauD) are rationalized by using a valence‐bond curve‐crossing diagram (see figure). It is shown that the barriers correlate with the strength of the C? H bond. Furthermore, electronic differences explain the differences between nonheme and heme iron(IV)–oxo hydrogen‐abstraction barriers.
Division of labour : The rapid enzyme inactivation in the electroenzymatic synthesis of chiral alcohols has been the main obstacle for synthetic applications during the last two decades. The reasons for this inactivation have now been elucidated. The development of a water‐soluble polymeric mediator and the spatial separation of enzyme and mediator led to the first stable process and significantly improved catalyst utilisations (see picture).
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described. 相似文献