首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45345篇
  免费   15681篇
  国内免费   55篇
化学   55281篇
晶体学   46篇
力学   2029篇
数学   2631篇
物理学   1094篇
  2024年   372篇
  2023年   4082篇
  2022年   1435篇
  2021年   2475篇
  2020年   4617篇
  2019年   2307篇
  2018年   2272篇
  2017年   593篇
  2016年   5569篇
  2015年   5515篇
  2014年   4937篇
  2013年   5120篇
  2012年   3175篇
  2011年   1017篇
  2010年   3396篇
  2009年   3349篇
  2008年   1023篇
  2007年   740篇
  2006年   115篇
  2005年   79篇
  1997年   81篇
  1995年   139篇
  1994年   84篇
  1993年   210篇
  1992年   96篇
  1988年   114篇
  1987年   98篇
  1986年   79篇
  1985年   97篇
  1984年   105篇
  1983年   101篇
  1982年   127篇
  1981年   154篇
  1980年   194篇
  1979年   184篇
  1978年   189篇
  1977年   309篇
  1976年   361篇
  1975年   456篇
  1974年   471篇
  1973年   284篇
  1972年   369篇
  1971年   355篇
  1970年   541篇
  1969年   413篇
  1968年   456篇
  1967年   114篇
  1966年   89篇
  1965年   83篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
261.
Actinide +VI complexes ( = , and ) with dipicolinic acid derivatives were synthesized and characterized by powder XRD, SQUID magnetometry and NMR spectroscopy. In addition, and complexes were described by first principles CAS based and two-component spin-restricted DFT methods. The analysis of the 1H paramagnetic NMR chemical shifts for all protons of the ligands according to the X-rays structures shows that the Fermi contact contribution is negligible in agreement with spin density determined by unrestricted DFT. The magnetic susceptibility tensor is determined by combining SQUID, pNMR shifts and Evans’ method. The SO-RASPT2 results fit well the experimental magnetic susceptibility and pNMR chemical shifts. The role of the counterions in the solid phase is pointed out; their presence impacts the magnetic properties of the complex. The temperature dependence of the pNMR chemical shifts has a strong contribution, contrarily to Bleaney's theory for lanthanide complexes. The fitting of the temperature dependence of the pNMR chemical shifts and SQUID magnetic susceptibility by a two-Kramers-doublet model for the complex and a non-Kramers-doublet model for the complex allows for the experimental evaluation of energy gaps and magnetic moments of the paramagnetic center.  相似文献   
262.
Two series of lanthanide complexes have been chosen to analyze trends in the magnetic properties and crystal field parameters (CFPs) along the two series: The highly symmetric LnZn16(picHA)16 series (Ln=Tb, Dy, Ho, Er, Yb; picHA=picolinohydroxamic acid) and the [Ln(dpa)3](C3H5N2)3 ⋅ 3H2O series (Ln=Ce–Yb; dpa=2,6-dipicolinic acid) with approximate three-fold symmetry. The first series presents a compressed coordination sphere of eight oxygen atoms whereas in the second series, the coordination sphere consists of an elongated coordination sphere formed of six oxygen atoms. The CFPs have been deduced from ab initio calculations using two methods: The AILFT (ab initio ligand field theory) method, in which the parameters are determined at the orbital level, and the ITO (irreducible tensor operator) decomposition, in which the problems are treated at the many-electron level. It has been found that the CFPs are transferable from one derivative to another, within a given series, as a first approximation. The sign of the second-order parameter differs in the two series, reflecting the different environments. It has been found that the use of the strength parameter S allows for an easy comparison between complexes. Furthermore, in both series, the parameters have been found to decrease in magnitude along the series, and this decrease is attributed to covalent effects.  相似文献   
263.
Molybdenum disulfide (MoS2) is an intensively studied anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity, but it is still confronted by severe challenges of unsatisfactory rate capability and cycle life. Herein, few-layer MoS2 nanosheets, vertically grown on hierarchical carbon nanocages (hCNC) by a facile hydrothermal method, introduce pseudocapacitive lithium storage owing to the highly exposed MoS2 basal planes, enhanced conductivity, and facilitated electrolyte access arising from good hybridization with hCNC. Thus, the optimized MoS2/hCNC exhibits reversible capacities of 1670 mAh g−1 at 0.1 A g−1 after 50 cycles, 621 mAh g−1 at 5.0 A g−1 after 500 cycles, and 196 mAh g−1 at 50 A g−1 after 2500 cycles, which are among the best for MoS2-based anode materials. The specific power and specific energy, which can reach 16.1 kW and 252.8 Wh after 3000 cycles, respectively, indicate great potential in high-power and long-life LIBs. These findings suggest a promising strategy for exploring advanced anode materials with high reversible capacity, high-rate capability, and long-term recyclability.  相似文献   
264.
The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S)=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+-P(S)=S. The ionization potential of G-P(S)=S was calculated to be slightly lower than that of guanine in 5′-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S)=S led to dithiyl radical (P-2S.) formation on the μs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S)=S concentrations showed a bimolecular conversion of P-2S. to the σ2-σ*1-bonded dimer anion radical [-P-2S 2S-P-]G (150 K, DFT)=−7.2 kcal mol−1]. However, [-P-2S 2S-P-] formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=−1.4 kcal mol−1]. Neither P-2S. nor [-P-2S 2S-P-] oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.  相似文献   
265.
The reactivity of amidinatotetrylenes of the type E(tBu2bzm)R1 (E=Si, Ge; tBu2bzm=N,N′-bis(tertbutyl)benzamidinate; R1=alkyl or aryl) with the chromium Fischer alkynylcarbene complexes [Cr{C(OEt)C2R2}(CO)5] (R2=Ph; ferrocenyl, Fc) has been studied. At room temperature, two different reaction pathways have been identified: (a) attack of the amidinatotetrylene to the alkynyl C2 atom (γ-attack), which leads to σ-allenyl complexes in which the original Ccarbene atom maintains its attachment to the Cr(CO)5 and OEt groups (compounds 3 ), and (b) attack of the amidinatotetrylene to the Ccarbene atom (α-attack), which ends in σ-allenyl complexes in which the original Ccarbene atom is not attached to the metal atom and has been inserted into an E−N bond of the amidinatotetrylene forming an E-C-N-C-N five-membered ring (compounds 4 ). It has been found that compounds 3 are thermodynamically less stable than their corresponding 4 isomers and that some of the former (E=Ge; R1=CH2SiMe3) can be transformed into the latter upon heating. At high temperatures (>70 °C) the reactions involving bulky amidinatotetrylenes (R1=Mes, tBu) end in the carbene-substitution products [Cr{E(tBu2bzm)R1}(CO)5].  相似文献   
266.
Novel lithium–lanthanide (Ln: cerium and praseodymium) bimetallic coordination polymers with formulas C10H2LnLiO8 (Ln: Ce (CeLipma) and Pr (PrLipma)) and C10H3CeO8 (Cepma) were prepared through a simple hydrothermal method. The three compounds were characterized by means of FTIR spectroscopy, X-ray diffraction, single-crystal X-ray diffraction, SEM, TEM, and X-ray photoelectron spectroscopy. The results of structural refinement show that they belong to triclinic symmetry and P space group with cerium (or praseodymium) and lithium cations, forming coordination bonds to oxygen atoms from different pyromellitic acid molecules, and leading to the construction of 3D structures. It is interesting to note that the frameworks exclude any coordination water and lattice water. As an electrode material for lithium-ion batteries, CeLipma exhibits a maximum capacity of 800.5 mAh g−1 and a retention of 91.4 % after 50 cycles at a current density of 100 mA g−1. The favorable electrochemical properties of the lanthanide coordination polymers show potential application prospects in the field of electrode materials.  相似文献   
267.
The two independent and coordination sites of a newly synthesized bis[2-(hydroxyphenyl)-1,2,4-triazole] platform have been exploited to prepare four monometallic neutral ()PtII complexes carrying DMSO, pyridine, triphenylphosphine, or N-heterocyclic carbene as the fourth ligand. Then, the second coordination site was used to introduce an IR-active rhenium tricarbonyl entity, affording the four corresponding heterobimetallic neutral PtII/ReI complexes, as well as a cationic PtII/ReI derivative. X-ray crystallographic studies showed that distortion of the organic platform occurred to accommodate the coordination geometry of both metal centers. No ligand exchange or transchelation occurred upon incubation of the PtII complexes in aqueous environment or in the presence of FeIII, respectively. The antiproliferative activity of the ligand and complexes was first screened on the triple-negative breast cancer cell line MDA-MB-231. Then, the IC50 values of the most active candidates were determined on a wider panel of human cancer cells (MDA-MB-231, MCF-7, and A2780), as well as on a nontumorigenic cell line (MCF-10A). Low micromolar activities were reached for the complexes carrying a DMSO ligand, making them the first examples of highly active, but hydrolytically stable, PtII complexes. Finally, the characteristic mid-IR signature of the {Re(CO)3} fragment in the Pt/Re heterobimetallic complexes was used to quantify their uptake in breast cancer cells.  相似文献   
268.
269.
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号