全文获取类型
收费全文 | 359937篇 |
免费 | 17440篇 |
国内免费 | 1153篇 |
专业分类
化学 | 224117篇 |
晶体学 | 4619篇 |
力学 | 14794篇 |
综合类 | 7篇 |
数学 | 38794篇 |
物理学 | 96199篇 |
出版年
2023年 | 4558篇 |
2022年 | 3568篇 |
2021年 | 5571篇 |
2020年 | 7930篇 |
2019年 | 3990篇 |
2018年 | 3977篇 |
2016年 | 8754篇 |
2015年 | 8075篇 |
2014年 | 8678篇 |
2013年 | 18470篇 |
2012年 | 13550篇 |
2011年 | 14307篇 |
2010年 | 11240篇 |
2009年 | 11132篇 |
2008年 | 13290篇 |
2007年 | 13258篇 |
2006年 | 12353篇 |
2005年 | 11257篇 |
2004年 | 10111篇 |
2003年 | 8903篇 |
2002年 | 8766篇 |
2001年 | 10168篇 |
2000年 | 7747篇 |
1999年 | 6147篇 |
1998年 | 4919篇 |
1997年 | 4807篇 |
1996年 | 4850篇 |
1995年 | 4482篇 |
1994年 | 4196篇 |
1993年 | 4128篇 |
1992年 | 4519篇 |
1991年 | 4354篇 |
1990年 | 4064篇 |
1989年 | 3896篇 |
1988年 | 4228篇 |
1987年 | 3876篇 |
1986年 | 3754篇 |
1985年 | 5414篇 |
1984年 | 5503篇 |
1983年 | 4474篇 |
1982年 | 4875篇 |
1981年 | 4931篇 |
1980年 | 4726篇 |
1979年 | 4835篇 |
1978年 | 4831篇 |
1977年 | 4919篇 |
1976年 | 4910篇 |
1975年 | 4908篇 |
1974年 | 4774篇 |
1973年 | 4794篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Meng Liu Dr. Hao Fan Dr. Ou Zhuo Xiao Du Longqi Yang Prof. Peng Wang Lijun Yang Prof. Qiang Wu Prof. Xizhang Wang Prof. Zheng Hu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(15):3843-3848
Molybdenum disulfide (MoS2) is an intensively studied anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity, but it is still confronted by severe challenges of unsatisfactory rate capability and cycle life. Herein, few-layer MoS2 nanosheets, vertically grown on hierarchical carbon nanocages (hCNC) by a facile hydrothermal method, introduce pseudocapacitive lithium storage owing to the highly exposed MoS2 basal planes, enhanced conductivity, and facilitated electrolyte access arising from good hybridization with hCNC. Thus, the optimized MoS2/hCNC exhibits reversible capacities of 1670 mAh g−1 at 0.1 A g−1 after 50 cycles, 621 mAh g−1 at 5.0 A g−1 after 500 cycles, and 196 mAh g−1 at 50 A g−1 after 2500 cycles, which are among the best for MoS2-based anode materials. The specific power and specific energy, which can reach 16.1 kW and 252.8 Wh after 3000 cycles, respectively, indicate great potential in high-power and long-life LIBs. These findings suggest a promising strategy for exploring advanced anode materials with high reversible capacity, high-rate capability, and long-term recyclability. 相似文献
2.
3.
Giang Truong Nguyen Prof. Dr. Liviu Ungur 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(30):e202200227
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs. 相似文献
4.
The photoinduced dynamics of isolated n-hydroxyquinoline (nHQ) molecules (n=6,8) was investigated in femtosecond pump-probe experiments. A qualitative difference was found between 8HQ and 6HQ. After an initial rapid decay corresponding to the departure of the initial wavepacket out of the Franck-Condon region of the excitation, the 8HQ probe signal decays to zero in 0.37 ps whereas a much longer time constant of 10.4 ps is observed in 6HQ. This interrogates on the role played by the intramolecular H-bond N HO which is at play the 8HQ molecule. Ab-initio were performed at the MCSCF/aug-cc-pVDZ level on the 8HQ molecule to help the discussion. A complex energy landscape was found, which includes a conical intersection. 相似文献
5.
6.
The critical dimension necessary for a flame to propagate in suspensions of fuel particles in oxidiser is studied analytically and numerically. Two types of models are considered: First, a continuum model, wherein the individual particulate sources are not resolved and the heat release is assumed spatially uniform, is solved via conventional finite difference techniques. Second, a discrete source model, wherein the heat diffusion from individual sources is modelled via superposition of the Green's function of each source, is employed to examine the influence of the random, discrete nature of the media. Heat transfer to cold, isothermal walls and to a layer of inert gas surrounding the reactive medium are considered as the loss mechanisms. Both cylindrical and rectangular (slab) geometries of the reactive medium are considered, and the flame speed is measured as a function of the diameter and thickness of the domains, respectively. In the continuum model with inert gas confinement, a universal scaling of critical diameter to critical thickness near 2:1 is found. In the discrete source model, as the time scale of heat release of the sources is made small compared to the interparticle diffusion time, the geometric scaling between cylinders and slabs exhibits values greater than 2:1. The ability of the flame in the discrete regime to propagate in thinner slabs than predicted by continuum scaling is attributed to the flame being able to exploit local fluctuations in concentration across the slab to sustain propagation. As the heat release time of the sources is increased, the discrete source model reverts back to results consistent with the continuum model. Implications of these results for experiments are discussed. 相似文献
7.
Prof. Dr. Javier A. Cabeza Dr. Pablo García-Álvarez Prof. Dr. Mar Gómez-Gallego Laura González-Álvarez Alba D. Merinero Prof. Dr. Miguel A. Sierra 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(36):8635-8642
The reactivity of amidinatotetrylenes of the type E(tBu2bzm)R1 (E=Si, Ge; tBu2bzm=N,N′-bis(tertbutyl)benzamidinate; R1=alkyl or aryl) with the chromium Fischer alkynylcarbene complexes [Cr{C(OEt)C2R2}(CO)5] (R2=Ph; ferrocenyl, Fc) has been studied. At room temperature, two different reaction pathways have been identified: (a) attack of the amidinatotetrylene to the alkynyl C2 atom (γ-attack), which leads to σ-allenyl complexes in which the original Ccarbene atom maintains its attachment to the Cr(CO)5 and OEt groups (compounds 3 ), and (b) attack of the amidinatotetrylene to the Ccarbene atom (α-attack), which ends in σ-allenyl complexes in which the original Ccarbene atom is not attached to the metal atom and has been inserted into an E−N bond of the amidinatotetrylene forming an E-C-N-C-N five-membered ring (compounds 4 ). It has been found that compounds 3 are thermodynamically less stable than their corresponding 4 isomers and that some of the former (E=Ge; R1=CH2SiMe3) can be transformed into the latter upon heating. At high temperatures (>70 °C) the reactions involving bulky amidinatotetrylenes (R1=Mes, tBu) end in the carbene-substitution products [Cr{E(tBu2bzm)R1}(CO)5]. 相似文献
8.
Isomotive dielectrophoresis (isoDEP) is a unique DEP geometrical configuration where the gradient of the field-squared () is constant. IsoDEP analyzes polarizable particles based on their magnitude and direction of translation. Particle translation is a function of the polarizability of both the particles and suspending medium, the particles’ size and shape, and the frequency of the electric field. However, other electrokinetics act on the particles simultaneously, including electrothermal hydrodynamics. Hence, to maximize the DEP force relative to over electrokinetic forces, design parameters such as microchannel geometry, fabrication materials, and applied electric field must be properly tuned. In this work, scaling law analyses were developed to derive design rules, relative to particle diameter, to reduce unwanted electrothermal hydrodynamics relative to DEP-induced particle translation. For a particle suspended in 10 mS/m media, if the channel width and height are below ten particle diameters, the electrothermal-driven flow is reduced by ∼500 times compared to a channel that is 250 particles diameters in width and height. Replacing glass with silicon as the device's underlying substrate for an insulative-based isoDEP reduces the electrothermal induced flow approximately 20 times less. 相似文献
9.
Xiao-Yi Song Yu-Hang Zhang Ping-Ping Sun Prof. Dr. Jun Gao Prof. Dr. Fa-Nian Shi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(25):5654-5661
Novel lithium–lanthanide (Ln: cerium and praseodymium) bimetallic coordination polymers with formulas C10H2LnLiO8 (Ln: Ce (CeLipma) and Pr (PrLipma)) and C10H3CeO8 (Cepma) were prepared through a simple hydrothermal method. The three compounds were characterized by means of FTIR spectroscopy, X-ray diffraction, single-crystal X-ray diffraction, SEM, TEM, and X-ray photoelectron spectroscopy. The results of structural refinement show that they belong to triclinic symmetry and P space group with cerium (or praseodymium) and lithium cations, forming coordination bonds to oxygen atoms from different pyromellitic acid molecules, and leading to the construction of 3D structures. It is interesting to note that the frameworks exclude any coordination water and lattice water. As an electrode material for lithium-ion batteries, CeLipma exhibits a maximum capacity of 800.5 mAh g−1 and a retention of 91.4 % after 50 cycles at a current density of 100 mA g−1. The favorable electrochemical properties of the lanthanide coordination polymers show potential application prospects in the field of electrode materials. 相似文献
10.
Dr. Renata Kaczmarek Samuel Ward Dipra Debnath Taisiya Jacobs Alexander D. Stark Dariusz Korczyński Prof. Dr. Anil Kumar Prof. Dr. Michael D. Sevilla Dr. Sergey A. Denisov Dr. Viacheslav Shcherbakov Dr. Pascal Pernot Prof. Dr. Mehran Mostafavi Prof. Dr. Roman Dembinski Prof. Dr. Amitava Adhikary 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(43):9495-9505
The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S−)=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+-P(S−)=S. The ionization potential of G-P(S−)=S was calculated to be slightly lower than that of guanine in 5′-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S−)=S led to dithiyl radical (P-2S.) formation on the μs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S−)=S concentrations showed a bimolecular conversion of P-2S. to the σ2-σ*1-bonded dimer anion radical [-P-2S 2S-P-]− [ΔG (150 K, DFT)=−7.2 kcal mol−1]. However, [-P-2S 2S-P-]− formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=−1.4 kcal mol−1]. Neither P-2S. nor [-P-2S 2S-P-]− oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate. 相似文献