首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69475篇
  免费   16259篇
  国内免费   2071篇
化学   72081篇
晶体学   280篇
力学   3123篇
综合类   139篇
数学   4281篇
物理学   7901篇
  2024年   583篇
  2023年   4491篇
  2022年   3189篇
  2021年   4672篇
  2020年   7215篇
  2019年   4926篇
  2018年   2862篇
  2017年   1213篇
  2016年   6352篇
  2015年   6334篇
  2014年   5859篇
  2013年   6286篇
  2012年   4638篇
  2011年   2456篇
  2010年   4334篇
  2009年   4364篇
  2008年   2117篇
  2007年   1665篇
  2006年   965篇
  2005年   791篇
  2004年   590篇
  2003年   442篇
  2002年   395篇
  2001年   352篇
  2000年   265篇
  1999年   282篇
  1998年   219篇
  1997年   275篇
  1996年   234篇
  1995年   291篇
  1994年   199篇
  1993年   330篇
  1992年   193篇
  1991年   150篇
  1988年   157篇
  1982年   133篇
  1981年   163篇
  1980年   200篇
  1979年   192篇
  1978年   192篇
  1977年   313篇
  1976年   362篇
  1975年   461篇
  1974年   474篇
  1973年   285篇
  1972年   370篇
  1971年   358篇
  1970年   541篇
  1969年   414篇
  1968年   470篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
Density functional theory calculations suggest that β‐turn peptide segments can act as a novel dual‐relay elements to facilitate long‐range charge hopping transport in proteins, with the N terminus relaying electron hopping transfer and the C terminus relaying hole hopping migration. The electron‐ or hole‐binding ability of such a β‐turn is subject to the conformations of oligopeptides and lengths of its linking strands. On the one hand, strand extension at the C‐terminal end of a β‐turn considerably enhances the electron‐binding of the β‐turn N terminus, due to its unique electropositivity in the macro‐dipole, but does not enhance hole‐forming of the β‐turn C terminus because of competition from other sites within the β‐strand. On the other hand, strand extension at the N terminal end of the β‐turn greatly enhances hole‐binding of the β‐turn C terminus, due to its distinct electronegativity in the macro‐dipole, but does not considerably enhance electron‐binding ability of the N terminus because of the shared responsibility of other sites in the β‐strand. Thus, in the β‐hairpin structures, electron‐ or hole‐binding abilities of both termini of the β‐turn motif degenerate compared with those of the two hook structures, due to the decreased macro‐dipole polarity caused by the extending the two terminal strands. In general, the high polarity of a macro‐dipole always plays a principal role in determining charge‐relay properties through modifying the components and energies of the highest occupied and lowest unoccupied molecular orbitals of the β‐turn motif, whereas local dipoles with low polarity only play a cooperative assisting role. Further exploration is needed to identify other factors that influence relay properties in these protein motifs.  相似文献   
83.
The thermal stability and molecular order in monolayers of two organic semiconductors, PBI‐PA and PBI‐alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI‐PA, are reported. In situ X‐ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI‐PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI‐alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate.  相似文献   
84.
85.
86.
87.
Fluoropolymer microtubes with a smooth surface were fabricated in more than 70 % yield via reversible addition fragmentation chain transfer (RAFT) co‐polymerization of N,N′‐methylene bisacrylamide (MBA) gel fibers as both template and monomer, 2‐(perfluoro‐3‐methylbutyl)ethyl acrylate (R‐3420) as co‐monomer, and pentaerythritol tetraacrylate (PET4A) as cross‐linker. The resulting fluoropolymer microtubes were characterized fully by SEM, TEM, EDS, XPS, and FT‐IR. The influence of the monomer composition on the yields and morphologies of the tubes were investigated in detail. The results indicated that polymer microtubes with a smooth surface were obtained at suitable amounts of R‐3420 and PET4A. Because of the decreased solubility of MBA gel fibers, the wall thickness increased as more R‐3420 was used. In the presence of PET4A, the solution polymerization could be facilitated and more R‐3420 could be attached onto the tubes based on FT‐IR analysis. The water contact angle and swelling ratio measurements both revealed the low hydrophilicity and high lipophilicity of the fluoropolymer microtubes, which made the sample able to absorb toluene selectively in a water/toluene two‐phase system.  相似文献   
88.
In this study, two structural isomers α‐PBT and β‐PBT, which only differ in the phenyl substituent position on the quinoline chromophore, have been designed and successfully synthesized. The influences of substituent position on the film morphology and the storage performance of the devices were investigated. Both molecules employed in the memory devices exhibited same nonvolatile binary (write‐once‐read‐many‐times; WORM) characteristics, but the switch threshold voltage (Vth) of the β‐PBT‐based device was clearly lower than that of the α‐PBT‐based device. Simulation results demonstrate that the variation of the phenyl substituent position led to different intermolecular stacking styles and thus to varied grain sizes for each film morphology. This work illustrates that altering the phenyl substituent position on the molecular backbone could improve the quality of the film morphology and reduce power consumption, which is good for the rational design of future advanced organic memory devices (OMDs).  相似文献   
89.
Ferrocenylethynyl‐terminated derivatives 8 – 12 have been synthesized and characterized by electrochemistry and UV/Vis spectroscopy. The electrochemical and photophysical studies indicate that the electronic communication in ferrocenylethynyl‐substituted derivatives is strongly influenced by the substituted position of the ferrocenylethynyl moiety. In situ electrochemical oxidation or chemical oxidation caused a characteristically weak ligand‐to‐metal charge‐transfer (LMCT) band to appear at 700–1000 nm. Subsequent electrochemical reduction or chemical reduction recovered the most of the original curve and the color of the solution as well. Among the derivatives, compound 8 exhibits the highest cis/trans molar ratio (64:36) in the photostationary state (PSS) upon light irradiation at 365 nm. Compound 8 exhibits excellent fatigue resistance and reversibility under several repeated reversible isomerization cycles.  相似文献   
90.
Catalytic oxidation reactions often suffer from drawbacks such as low yields and poor selectivity. Particularly, selective oxidation of alcohols becomes more difficult when a compound contains more than one oxidizable functional group. In order to deliver a methodology that addresses these issues, herein we report an efficient, aerobic, chemoselective and simplified approach to oxidize a broad range of benzyl and propargyl alcohols containing diverse functional groups to their corresponding aldehydes and ketones in excellent yields under mild reaction conditions. Optimal yields were obtained at room temperature using 1 mmol substrate, 10 mol % copper(I) iodide, 10 mol % 4-dimethylaminopyridine (DMAP), and 1 mol % 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) in acetonitrile, under an oxygen balloon. The catalytic system can be applied even when sensitive and oxidizable groups such as alkynes, amines, and phenols are present; starting materials and products containing such groups were found to be stable under the developed conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号