全文获取类型
收费全文 | 61975篇 |
免费 | 6040篇 |
国内免费 | 2篇 |
专业分类
化学 | 61963篇 |
晶体学 | 64篇 |
力学 | 2093篇 |
数学 | 2684篇 |
物理学 | 1213篇 |
出版年
2024年 | 376篇 |
2023年 | 4182篇 |
2022年 | 2457篇 |
2021年 | 3984篇 |
2020年 | 6467篇 |
2019年 | 4082篇 |
2018年 | 2286篇 |
2017年 | 616篇 |
2016年 | 5585篇 |
2015年 | 5561篇 |
2014年 | 4957篇 |
2013年 | 5147篇 |
2012年 | 3242篇 |
2011年 | 1071篇 |
2010年 | 3431篇 |
2009年 | 3369篇 |
2008年 | 1065篇 |
2007年 | 776篇 |
2006年 | 138篇 |
2005年 | 107篇 |
1997年 | 93篇 |
1996年 | 82篇 |
1995年 | 141篇 |
1994年 | 90篇 |
1993年 | 214篇 |
1992年 | 96篇 |
1988年 | 115篇 |
1987年 | 99篇 |
1985年 | 123篇 |
1984年 | 106篇 |
1983年 | 101篇 |
1982年 | 129篇 |
1981年 | 154篇 |
1980年 | 195篇 |
1979年 | 184篇 |
1978年 | 189篇 |
1977年 | 310篇 |
1976年 | 361篇 |
1975年 | 456篇 |
1974年 | 471篇 |
1973年 | 284篇 |
1972年 | 369篇 |
1971年 | 355篇 |
1970年 | 541篇 |
1969年 | 413篇 |
1968年 | 482篇 |
1967年 | 114篇 |
1966年 | 90篇 |
1965年 | 83篇 |
1963年 | 112篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Solvothermal reaction of [MnCl2(terpy)] with elemental As and Se at a 1:1:2 molar ratio in H2O/trien (10:1) at 150 °C affords the linear trimanganese(II) complex [{Mn(terpy)}3(μ‐AsSe4)2] ( 1 ). The tridentate [AsSe2(Se2)]3? anions of 1 chelate the terminal {Mn(terpy)}2+ fragments and bridge these through their remaining Se atom to the central {Mn(terpy)}2+ moiety. Weak interactions of Mn1···Se and Mn3···Se bonds with length 2.914(7) and 3.000(7) Å link the molecules of 1 into infinite chains. Treatment of [MnCl2(cyclam)]Cl with As and Se at a 1:1:2 molar ratio in superheated H2O/CH3OH (1:1) at 150 °C yields the dinuclear complex [{Mn(cyclam)}2 (μ‐As2Se6)] ( 2 ), whose novel [(AsSe2)2(μ‐Se2)]4? ligands bridge the MnII atoms in a μ‐1κ2Se1, Se2: 2κ2Se5,Se6 manner. 相似文献
992.
Densely substituted hydroquinoid phenanthrene ( 10 – 18 ), acephenanthrene ( 19 ), and triphenylene chromium tricarbonyl complexes ( 20 – 22 ) have been prepared via benzannulation of naphthalenyl ( 1 – 7 ), acenaphthenyl ( 8 ) and phenanthrenyl carbene complexes ( 9 ), respectively. The naphthalenyl, acenaphthenyl and phenanthrenyl carbene complexes 1 – 9 were obtained in 52–88 % yield starting from commercially available bromoarenes by dehalolithiation, addition of hexacarbonyl chromium to the lithioarene and O‐alkylation of the resulting acyl chromates with trimethyloxonium tetrafluoroborate (Fischer route). The benzannulation of the aryl carbene complexes (either with 3‐hexyne / (t‐butyl)dimethylsilyl chloride or with (t‐butyl)dimethylsilylethyne) allowed the regiospecific synthesis of the oligocyclic hydroquinoid arene tricarbonyl chromium complexes 10 – 22 in 44–94 % yield thus providing a two‐step synthesis with overall yields of 18 ‐ 80 %. Under the kinetic reaction conditions used the metal atom is exclusively coordinated to the persubstituted terminal hydroquinoid ring. The molecular structures of phenanthrene complexes 10 , 12 – 14 , and 16 , acephenanthrene complex 19 , and triphenylene complexes 20 and 21 in the solid state have been determined by X‐ray crystallography. The carbonyl ligands either adopt an eclipsed ( 10 , 12 , 14 , 16 , 19 , 20 ) or staggered ( 13 , 21 ) exo‐conformation pointing away from the center of the phenanthrene, acephenanthrene and triphenylene ligands, respectively. The coordination of the metal atom to the hydroquinoid ring is unsymmetric with the largest metal‐carbon distances found between the chromium atom and one bridgehead carbon and the ring carbon atom bearing the bulky (t‐butyl)dimethylsilyloxy (TBDMSO) substituent. 相似文献
993.
John L. Kulp III Dr. Thomas D. Clark Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(44):11867-11877
β Helices—helices formed by alternating d,l ‐peptides and stabilized by β‐sheet hydrogen bonding—are found naturally in only a handful of highly hydrophobic peptides. This paper explores the scope of β‐helical structure by presenting the first design and biophysical characterization of a hydrophilic d,l ‐peptide, 1 , that forms a β helix in methanol. The design of 1 is based on the β‐hairpin/β helix—a new supersecondary that had been characterized previously only for hydrophobic peptides in nonpolar solvents. Incorporating polar residues in 1 provided solubility in methanol, in which the peptide adopts the expected β‐hairpin/β‐helical structure, as evidenced by CD, analytical ultracentrifugation (AUC), NMR spectroscopy, and NMR‐based structure calculations. Upon titration with water (at constant peptide concentration), the structure in methanol ( 1 m ) transitions cooperatively to an extended conformation ( 1 w ) resembling a cyclic β‐hairpin; observation of an isodichroic point in the solvent‐dependent CD spectra indicates that this transition is a two‐state process. In contrast, neither 1 m nor 1 w show cooperative thermal melting; instead, their structures appear intact at temperatures as high as 65 °C; this observation suggests that steric constraint is dominant in stabilizing these structures. Finally, the 1H NMR CαH spectroscopic resonances of 1 m are downfield‐shifted with respect to random‐coil values, a hitherto unreported property for β helices that appears to be a general feature of these structures. These results show for the first time that an appropriately designed β‐helical peptide can fold stably in a polar solvent; furthermore, the structural and spectroscopic data reported should prove useful in the future design and characterization of water‐soluble β helices. 相似文献
994.
Anna Evans Anja Bieberle-Hütter Henning Galinski Jennifer L. M. Rupp Thomas Ryll Barbara Scherrer René Tölke Ludwig J. Gauckler 《Monatshefte für Chemie / Chemical Monthly》2009,140(9):975-983
Abstract Micro-solid oxide fuel cells (micro-SOFC) are predicted to be of high energy density and are potential power sources for portable
electronic devices. A micro-SOFC system consists of a fuel cell comprising a positive electrode-electrolyte-negative electrode
(i.e. PEN) element, a gas-processing unit, and a thermal system where processing is based on micro-electro-mechanical-systems
fabrication techniques. A possible system approach is presented. The critical properties of the thin film materials used in
the PEN membrane are discussed, and the unsolved subtasks related to micro-SOFC membrane development are pointed out. Such
a micro-SOFC system approach seems feasible and offers a promising alternative to state-of-the-art batteries in portable electronics.
Graphical abstract Graphical Abstract text
相似文献
995.
Øystein Stakkestad Anja CV Larsen Anne-Katrine Kvissel Sissel Eikvar Sigurd Ørstavik Bjørn S Skålhegg 《BMC biochemistry》2011,12(1):7
Background
Protein kinase A type I (PKAI) and PKAII are expressed in most of the eukaryotic cells examined. PKA is a major receptor for cAMP and specificity is achieved partly through tissue-dependent expression and subcellular localization of subunits with different biochemical properties. In addition posttranslational modifications help fine tune PKA activity, distribution and interaction in the cell. In spite of this the functional significance of two forms of PKA in one cell has not been fully determined. Here we have tested the ability of PKAI and PKAII formed by expression of the regulatory (R) subunits RIα or RIIα in conjunction with Cα1 or Cβ2 to activate a co-transfected luciferace reporter gene, controlled by the cyclic AMP responsive element-binding protein (CREB) in vivo. 相似文献996.
Prakash T. Parvatkar Dr. Perunninakulath S. Parameswaran Prof. Dr. Santosh G. Tilve 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(18):5460-5489
Heterocyclic scaffolds represent the key structural subunits of many biologically active compounds. Over the last few years iodine‐mediated reactions have been extensively studied due to their low cost and eco‐friendliness. This Review covers advances in the field of iodine‐mediated synthesis of heterocyclic compounds since 2006, especially with an emphasis on mechanisms of ring formation. In this article, syntheses of different heterocycles are classified based on the manipulation of functional groups. 相似文献
997.
Wanhua Wu Shaomin Ji Wenting Wu Jingyin Shao Dr. Huimin Guo Prof. Tony D. James Prof. Jianzhang Zhao 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(16):4953-4964
RuII–bis‐pyridine complexes typically absorb below 450 nm in the UV spectrum and their molar extinction coefficients are only moderate (ε<16 000 M ?1 cm?1). Thus, RuII–polyimine complexes that show intense visible‐light absorptions are of great interest. However, no effective light‐harvesting ruthenium(II)/organic chromophore arrays have been reported. Herein, we report the first visible‐light‐harvesting RuII–coumarin arrays, which absorb at 475 nm (ε up to 63 300 M ?1 cm?1, 4‐fold higher than typical RuII–polyimine complexes). The donor excited state in these arrays is efficiently converted into an acceptor excited state (i.e., efficient energy‐transfer) without losses in the phosphorescence quantum yield of the acceptor. Based on steady‐state and time‐resolved spectroscopy and DFT calculations, we proposed a general rule for the design of RuII–polypyridine–chromophore light‐harvesting arrays, which states that the 1IL energy level of the ligand must be close to the respective energy level of the metal‐to‐ligand charge‐transfer (M LCT) states. Lower energy levels of 1IL/3IL than the corresponding 1M LCT/3M LCT states frustrate the cascade energy‐transfer process and, as a result, the harvested light energy cannot be efficiently transferred to the acceptor. We have also demonstrated that the light‐harvesting effect can be used to improve the upconversion quantum yield to 15.2 % (with 9,10‐diphenylanthracene as a triplet‐acceptor/annihilator), compared to the parent complex without the coumarin subunit, which showed an upconversion quantum yield of only 0.95 %. 相似文献
998.
Michael E. Slaney D. Jason Anderson Dusan Ristic‐Petrovic Dr. Robert McDonald Prof. Dr. Martin Cowie 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(15):4723-4737
The bridging fluoroolefin ligands in the complexes [Ir2(CH3)(CO)2(μ‐olefin)(dppm)2][OTf] (olefin=tetrafluoroethylene, 1,1‐difluoroethylene; dppm=μ‐Ph2PCH2PPh2; OTf?=CF3SO3?) are susceptible to facile fluoride ion abstraction. Both fluoroolefin complexes react with trimethylsilyltriflate (Me3SiOTf) to give the corresponding fluorovinyl products by abstraction of a single fluoride ion. Although the trifluorovinyl ligand is bound to one metal, the monofluorovinyl group is bridging, bound to one metal through carbon and to the other metal through a dative bond from fluorine. Addition of two equivalents of Me3SiOTf to the tetrafluoroethylene‐bridged species gives the difluorovinylidene‐bridged product [Ir2(CH3)(OTf)(CO)2(μ‐OTf)(μ‐C?CF2)(dppm)2][OTf]. The 1,1‐difluoroethylene species is exceedingly reactive, reacting with water to give 2‐fluoropropene and [Ir2(CO)2(μ‐OH)(dppm)2][OTf] and with carbon monoxide to give [Ir2(CO)3(μ‐κ1:η2‐C?CCH3)(dppm)2][OTf] together with two equivalents of HF. The trifluorovinyl product [Ir2(κ1‐C2F3)(OTf)(CO)2(μ‐H)(μ‐CH2)(dppm)2][OTf], obtained through single C? F bond activation of the tetrafluoroethylene‐bridged complex, reacts with H2 to form trifluoroethylene, allowing the facile replacement of one fluorine in C2F4 with hydrogen. 相似文献
999.
1000.
Dr. Ruth Matesanz Dr. José Fernando Diaz Dr. Francisco Corzana Andrés G. Santana Dr. Agatha Bastida Dr. Juan Luis Asensio 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(10):2875-2889
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme‐catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non‐ inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside‐modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular‐recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4′(ANT(4′)), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4′) seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non‐inactivable derivatives a challenging task. 相似文献