首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66631篇
  免费   21605篇
  国内免费   2415篇
化学   71069篇
晶体学   355篇
力学   3543篇
综合类   109篇
数学   5539篇
物理学   10036篇
  2023年   4343篇
  2022年   2157篇
  2021年   3255篇
  2020年   5446篇
  2019年   3218篇
  2018年   2982篇
  2017年   1281篇
  2016年   6570篇
  2015年   6467篇
  2014年   6111篇
  2013年   6737篇
  2012年   5418篇
  2011年   3388篇
  2010年   4901篇
  2009年   4784篇
  2008年   2627篇
  2007年   2221篇
  2006年   1448篇
  2005年   1215篇
  2004年   882篇
  2003年   679篇
  2002年   638篇
  2001年   480篇
  2000年   452篇
  1999年   540篇
  1998年   447篇
  1997年   516篇
  1996年   527篇
  1995年   497篇
  1994年   389篇
  1993年   444篇
  1992年   330篇
  1991年   264篇
  1990年   223篇
  1989年   218篇
  1988年   211篇
  1987年   207篇
  1980年   205篇
  1979年   193篇
  1978年   195篇
  1977年   312篇
  1976年   370篇
  1975年   467篇
  1974年   474篇
  1973年   287篇
  1972年   373篇
  1971年   355篇
  1970年   543篇
  1969年   413篇
  1968年   457篇
排序方式: 共有10000条查询结果,搜索用时 893 毫秒
981.
The reactions of Ge2(C6H5)6 with HCl and HBr lead in nearly quantitative yields to the 1,1,2,2-tetrahalo derivatives Cl2(C6H5)GeGe(C6H5)Cl2 (I) and Br2(C6H5)GeGe(C6H5)Br2 (II), resp. The Si?Ge bond of (C6H5)3SiGe(C6H5)3 is cleaved under the conditions of hydrohalogenation. The vibrational spectra of Ge2Br6, Ge2(C6H5)6, I, and II are reported. The influence of vibrational coupling on ν GeGe in these compounds is discussed in detail, including vibrational calculations.  相似文献   
982.
Aptamers are single‐stranded nucleic acid molecules selected in vitro to bind to a variety of target molecules. Aptamers bound to proteins are emerging as a new class of molecules that rival commonly used antibodies in both therapeutic and diagnostic applications. With the increasing application of aptamers as molecular probes for protein recognition, it is important to understand the molecular mechanism of aptamer–protein interaction. Recently, we developed a method of using atomic force microscopy (AFM) to study the single‐molecule rupture force of aptamer/protein complexes. In this work, we investigate further the unbinding dynamics of aptamer/protein complexes and their dissociation‐energy landscape by AFM. The dependence of single‐molecule force on the AFM loading rate was plotted for three aptamer/protein complexes and their dissociation rate constants, and other parameters characterizing their dissociation pathways were obtained. Furthermore, the single‐molecule force spectra of three aptamer/protein complexes were compared to those of the corresponding antibody/protein complexes in the same loading‐rate range. The results revealed two activation barriers and one intermediate state in the unbinding process of aptamer/protein complexes, which is different from the energy landscape of antibody/protein complexes. The results provide new information for the study of aptamer–protein interaction at the molecular level.  相似文献   
983.
984.
The solid solutions of ScBRh3-ScRh3 and CeBRh3-CeRh3 are synthesized by the arc melting method, where RBRh3 and RRh3 (R=rare earth element) have perovskite and AuCu3 type structures, respectively. The binding energy of Sc 2p3/2 for ScBxRh3 increases with the boron concentration. The Knight shift of 45Sc observed by nuclear magnetic resonance spectroscopy decreases with increase of boron concentration. The decrement of the Knight shift corresponds the Sc 4s electron density at the Fermi level. The intensity ratio of f2f1f0 of Ce 3d XPS spectrum changes with boron concentration of CeBxRh3. It is concluded that in both cases of ScBxRh3 and CeBxRh3 the charge on the atoms on A-site changes with the concentration of the atoms on B-site, where the atoms are not directly bound.  相似文献   
985.
Chiral (pyrrolidine salen)Mn(III) complexes 1 with an N-benzoyl group and 2 with an N-isonicotinoyl group as well as the corresponding N-methyl (3) and N-benzyl (4) pyridinium salts of 2 were synthesized. The catalytic properties of 1–4 and 2 with excess CH3I were explored to figure out the influence of the internal pyridinium salt in the catalyst on asymmetric epoxidation of substituted chromenes with NaClO/PPNO as an oxidant system in the aqueous/organic biphasic medium. The (pyrrolidine salen)Mn(III) complexes with an internal pyridinium salt, either formed in situ or isolated, displayed higher activities than analogous complexes 1, 2 and Jacobsen's catalyst in the aforementioned reaction, with comparable high yields and ee values. The acceleration of the reaction rate is attributed to the phase transfer capability of the built-in pyridinium salt of the (salen)Mn(III) catalyst. The effect of the internal pyridinium salt on the epoxidation of substituted chromenes is similar to that of the external pyridinium salts and ammonium halides.  相似文献   
986.
Low-temperature heat capacities of the compound Na(C4H7O5)·H2O(s) have been measured with an automated adiabatic calorimeter. A solid-solid phase transition and dehydration occur at 290-318 K and 367-373 K, respectively. The enthalpy and entropy of the solid-solid transition are ΔtransHm = (5.75 ± 0.01) kJ mol−1 and ΔtransSm = (18.47 ± 0.02) J K−1 mol−1. The enthalpy and entropy of the dehydration are ΔdHm = (15.35 ± 0.03) kJ mol−1 and ΔdSm = (41.35 ± 0.08) J K−1 mol−1. Experimental values of heat capacities for the solids (I and II) and the solid-liquid mixture (III) have been fitted to polynomial equations.  相似文献   
987.
A new computational docking protocol has been developed and used in combination with conformational information inferred from REDOR-NMR experiments on microtubule bound 2-(p-fluorobenzoyl)paclitaxel to delineate a unique tubulin binding structure of paclitaxel. A conformationally constrained macrocyclic taxoid bearing a linker between the C-14 and C-3'N positions has been designed and synthesized to enforce this "REDOR-taxol" conformation. The novel taxoid SB-T-2053 inhibits the growth of MCF-7 and LCC-6 human breast cancer cells (wild-type and drug resistant) on the same order of magnitude as paclitaxel. Moreover, SB-T-2053 induces in vitro tubulin polymerization at least as well as paclitaxel, which directly validates our drug design process. These results open a new avenue for drug design of next generation taxoids and other microtubule-stabilizing agents based on the refined structural information of drug-tubulin complexes, in accordance with typical enzyme-inhibitor medicinal chemistry precepts.  相似文献   
988.
The electronic structure of the tetrahedral molecule VCL4 is investigated within the CNDO-MO approximations. The metal and ligand valence orbitals, 3d, 4s, 4p; and 3s, 3p; respectively, have been systematically varied in an attempt to minimize the total energy; “optimum” V 4s(χ4 = 1.10) and 4p(d 3 p 2) orbitals have been established, but V 3d(d n ) and Cl(-δ) valence orbitals are only seen to favor lower energy for expanded orbitals. Since determining the one-electron molecular orbital level which is occupied by the vanadium lone electron is a major aspect of this investigation, all calculations have been performed in triplicate: calculations assuming the unpaired electron occupies the 3a 1, 2 e and 4t 2 molecular orbital (ground state electronic configurations2 A 1,2 E, and2 T 2, respectively). The Hartree-Fock equations have been solved by Roothaan's SCF method for open shells, but off-diagonal multipliers between filled and partly filled molecular orbitals of the same symmetry have been neglected. As a qualitative estimate of the error introduced by this simplification, the pertinent overlap integrals between the eigenfunctions from calculations for the three possible configurations,2 A 1,2 E, and2 T 2, are investigated as functions of the component 3d(d n ) and Cl(-δ) valence orbitals. The overlap integrals from the relevant2 A 1 and2 T 2 calculations are reasonably small, but the neglect of off-diagonal multipliers in calculations on the2 E state is found to be a poor approximation. An ordering of the non-filled molecular orbitals in VCl4 of 4t 2 < 3a 1 < 2e < 5t 2 seems most consistent with the numerous calculations. This suggested ground state electronic configuration of2 T 2 introduces new aspects to the consideration of a (dynamic) Jahn-Teller effect in VCl4. Experimental data pertinent to the electronic structure of VCl4 has been briefly summarized, but unfortunately it is inadequate to confirm or deny the present calculations.  相似文献   
989.
The success of perturbation calculations of second order for the NFE (“Nearly Free Electron”) metals and that of the two-parameter model of Pettifor for the transition elements show that the lattice-stability of the metals has simple physical reasons. Using the results of Harrison, Heine and Weaire, Deegan, and Pettifor, a model is developed which allows to explain the stability of the three metal lattices in terms of differences in the potentials. Only those potential differences are considered which are caused by the different packing of the lattices. With the aid of the virial theorem the band structure energy is connected with the potential bandstructure energy. The sequence of stability is predicted to be body centered cubic (bcc), hexagonal close packed (hcp), face centered cubic (fcc) with increasing valence electron concentration. The ranges of stability can be expressed in simple numbers. This simple model holds in principle for NFE as well as for transition metals because it contains no assumptions restricted to only one of these metal types. Deviations of the observed lattice stability from the model can be understood from the approximations involved.  相似文献   
990.
The hyperfine structure of the metastable atomic states (3d 74s)5 F 2,3,4,5 and (3d 7 4s)3 F 2,3,4 of57Fe has been measured using theABMR- LIRF method (atomic beam magnetic resonance detected by laser induced resonance fluorescence). From these measurements the following hfs constantsA of the magnetic dipole interaction have been obtained (corrected for second order effects):A(5 F 2)=55.994(7) MHzA(5 F 3)=69.632(5) MHzA(5 F 4)=78.435(4) MHzA(5 F 5)=87.246(3) MHzA(3 F 2)=143.328(4) MHzA(3 F 3)=50.602(10) MHzA(3 F 4)=13.456(5) MHz  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号