首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45262篇
  免费   15678篇
  国内免费   54篇
化学   55199篇
晶体学   46篇
力学   2029篇
数学   2632篇
物理学   1088篇
  2024年   373篇
  2023年   4083篇
  2022年   1434篇
  2021年   2476篇
  2020年   4617篇
  2019年   2306篇
  2018年   2275篇
  2017年   594篇
  2016年   5565篇
  2015年   5516篇
  2014年   4934篇
  2013年   5119篇
  2012年   3168篇
  2011年   1010篇
  2010年   3391篇
  2009年   3346篇
  2008年   1010篇
  2007年   732篇
  2006年   98篇
  1997年   80篇
  1995年   139篇
  1994年   83篇
  1993年   210篇
  1992年   96篇
  1988年   114篇
  1987年   98篇
  1986年   79篇
  1985年   97篇
  1984年   105篇
  1983年   101篇
  1982年   127篇
  1981年   154篇
  1980年   194篇
  1979年   184篇
  1978年   189篇
  1977年   309篇
  1976年   361篇
  1975年   456篇
  1974年   471篇
  1973年   284篇
  1972年   369篇
  1971年   355篇
  1970年   541篇
  1969年   413篇
  1968年   456篇
  1967年   114篇
  1966年   89篇
  1965年   83篇
  1963年   112篇
  1962年   77篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Historically, researchers have put considerable effort into developing automation systems to prepare natural biopolymers such as peptides and oligonucleotides. The availability of such mature systems has significantly advanced the development of natural science. Over the past twenty years, breakthroughs in automated synthesis of oligosaccharides have also been achieved. A machine-driven platform for glycopeptide synthesis by a reconstructed peptide synthesizer is described. The designed platform is based on the use of an amine-functionalized silica resin to facilitate the chemical synthesis of peptides in organic solvent as well as the enzymatic synthesis of glycan epitopes in the aqueous phase in a single reaction vessel. Both syntheses were performed by a peptide synthesizer in a semiautomated manner.  相似文献   
992.
The first electrochemical dehydrogenative C−S bond formation leading to thienoacene derivatives is described. Several thienoacene derivatives were synthesized by dehydrogenative C−H/S−H coupling. The addition of nBu4NBr, which catalytically promoted the reaction as a halogen mediator, was essential.  相似文献   
993.
994.
Liquid vinyl monomers were converted into solid crystals via halogen bonding. They underwent solid-phase radical polymerizations through heating at 40 °C or ultraviolet photo-irradiation (365 nm). The X-ray crystallography analysis showed the high degree of monomer alignment in the crystals. The polymerizations of the solid monomer crystals yielded polymers with high molecular weights and relatively low dispersities because of the high degree of the monomer alignment in the crystal. As a unique application of this system, the crystalized monomers were assembled to pre-determined structures, followed by solid-phase polymerization, to obtain a two-layer polymer sheet and a three-dimensional house-shaped polymer material. The two-layer sheet contained a unique asymmetric pore structure and exhibited a solvent-responsive shape memory property and may find applications to asymmetric membranes and polymer actuators.  相似文献   
995.
The selective hydrolysis of proteins by non-enzymatic catalysis is difficult to achieve, yet it is crucial for applications in biotechnology and proteomics. Herein, we report that discrete hafnium metal-oxo cluster [Hf18O10(OH)26(SO4)13⋅(H2O)33] ( Hf18 ), which is centred by the same hexamer motif found in many MOFs, acts as a heterogeneous catalyst for the efficient hydrolysis of horse heart myoglobin (HHM) in low buffer concentrations. Among 154 amino acids present in the sequence of HHM, strictly selective cleavage at only 6 solvent accessible aspartate residues was observed. Mechanistic experiments suggest that the hydrolytic activity is likely derived from the actuation of HfIV Lewis acidic sites and the Brønsted acidic surface of Hf18 . X-ray scattering and ESI-MS revealed that Hf18 is completely insoluble in these conditions, confirming the HHM hydrolysis is caused by a heterogeneous reaction of the solid Hf18 cluster, and not from smaller, soluble Hf species that could leach into solution.  相似文献   
996.
Porous tantalum nitride (Ta3N5) single crystals, combining structural coherence and porous microstructure, would substantially improve the photoelectrochemical performance. The structural coherence would reduce the recombination of charge carriers and maintain excellent transport properties while the porous microstructure would not only reduce photon scattering but also facilitate surface reactions. Here, we grow bulk-porous Ta3N5 single crystals on a two-centimeter scale with (002), (023), and (041) facets, respectively, and show significantly enhanced photoelectrochemical performance. We show the preferential facet growth of porous crystals in a lattice reconstruction strategy in relation to lattice match and lattice channel. We present the facet engineering to enhance light absorption, exciton lifetime and transport properties. The porous Ta3N5 single crystal boosts photoelectrochemical oxidation of alcohols with the (002) facet showing the highest performance of >99 % alcohol conversion and >99 % aldehyde/ketone selectivity.  相似文献   
997.
In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li-S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal-based pre-catalysts (Co4N) in working Li-S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single-crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all-phase polysulfide-involving reactions. Consequently, Co4N enables stable operation of high-rate (10 C, 16.7 mA cm−2) and electrolyte-starved (4.7 μL mgS−1) Li-S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low-valence metal compounds.  相似文献   
998.
The concept of anion–π catalysis focuses on the stabilization of anionic transition states on aromatic π surfaces. Recently, we demonstrated the occurrence of epoxide-opening ether cyclizations on aromatic π surfaces. Although the reaction proceeded through unconventional mechanisms, the obtained products are the same as those from conventional Brønsted acid catalysis, and in agreement with the Baldwin selectivity rules. Different mechanisms, however, should ultimately lead to new products, a promise anion–π catalysis has been reluctant to live up to. Herein, we report non-trivial reactions that work with anion–π catalysis, but not with Brønsted acids, under comparable conditions. Namely, we show that the anion–π templated autocatalysis and epoxide opening with alcoholate–π interactions can provide access to unconventional ring chemistry. For smaller rings, anion–π catalysis affords anti-Baldwin oxolanes, 2-oxabicyclo[3.3.0]octanes, and the expansion of Baldwin oxetanes by methyl migration. For larger rings, anion–π templated autocatalysis is thought to alleviate the entropic penalty of folding to enable disfavored anti-Baldwin cyclizations into oxepanes and oxocanes.  相似文献   
999.
Carbon dots (CDs) and their derivatives are useful platforms for studying electron-donor/acceptor interactions and dynamics therein. Herein, we couple amorphous CDs with phthalocyanines (Pcs) that act as electron donors with a large extended π-surface and intense absorption across the visible range of the solar spectrum. Investigations of the intercomponent interactions by means of steady-state and pump-probe transient absorption spectroscopy reveal symmetry-breaking charge transfer/separation and recombination dynamics within pairs of phthalocyanines. The CDs facilitate the electronic interactions between the phthalocyanines. Thus, our findings suggest that CDs could be used to support electronic couplings in multichromophoric systems and further increase their applicability in organic electronics, photonics, and artificial photosynthesis.  相似文献   
1000.
We report 8-step syntheses of (−)-minovincine and (−)-aspidofractinine using easily available and inexpensive reagents and catalyst. A key element of the strategy was the utilization of a sequence of cascade reactions to rapidly construct the penta- and hexacyclic frameworks. These cascade transformations included organocatalytic Michael-aldol condensation, a multistep anionic Michael-SN2 cascade reaction, and Mannich reaction interrupted Fischer indolization. To streamline the synthetic routes, we also investigated the deliberate use of steric effect to secure various chemo- and regioselective transformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号