首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48198篇
  免费   18158篇
  国内免费   84篇
化学   59272篇
晶体学   95篇
力学   2108篇
数学   2976篇
物理学   1989篇
  2024年   373篇
  2023年   4093篇
  2022年   1465篇
  2021年   2512篇
  2020年   4665篇
  2019年   2384篇
  2018年   2316篇
  2017年   637篇
  2016年   5626篇
  2015年   5570篇
  2014年   5025篇
  2013年   5357篇
  2012年   3464篇
  2011年   1392篇
  2010年   3573篇
  2009年   3548篇
  2008年   1391篇
  2007年   1103篇
  2006年   514篇
  2005年   431篇
  2004年   391篇
  2003年   316篇
  2002年   308篇
  2001年   123篇
  1997年   148篇
  1996年   144篇
  1995年   193篇
  1993年   252篇
  1992年   125篇
  1988年   140篇
  1987年   129篇
  1986年   125篇
  1985年   155篇
  1984年   152篇
  1983年   124篇
  1982年   179篇
  1981年   208篇
  1980年   239篇
  1979年   222篇
  1978年   218篇
  1977年   335篇
  1976年   384篇
  1975年   472篇
  1974年   484篇
  1973年   302篇
  1972年   373篇
  1971年   358篇
  1970年   541篇
  1969年   415篇
  1968年   460篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
During the last decade, there has been a tremendous interest for developing non-natural biocompatible transformations in biologically relevant media. Among the different encountered strategies, the use of transition metal complexes offers unique possibilities due to their high transformative power. However, translating the potential of metal catalysts to biological settings, including living cells or small-animal models such as mice or zebrafish, poses numerous challenges associated to their biocompatibility, and their stability and reactivity in crowded aqueous environments. Herein, we describe the most relevant advances in this direction, with a particular emphasis on the systems’ structure, their mode of action and the mechanistic bases of each transformation. Thus, the key challenges from an organometallic perspective might be more easily identified.  相似文献   
992.
Multi-ligand self-assembly to attain the AgI-N-heterocyclic carbene (NHC)-built hexanuclear organometallic cages of composition [Ag6( 3 a , b )4](PF6)6 from the reaction of benzimidazole-derived tris(azolium) salts [H3- 3 a , b ](PF6)3 with Ag2O was achieved. The molecular structures of the cages were established by X-ray diffraction studies along with NMR and MS analyses. The existence of a single assembly in solution was supported by diffusion-ordered spectroscopy (DOSY) 1H NMR spectra. Further, transmetalation reactions of these self-assembled complexes, [Ag6( 3 a , b )4](PF6)6, with CuI/AuI-ions provided various coinage metal-NHC complexes having diverse molecular compositions, which included the first example of a hexanuclear CuI-dodecacarbene complex, [Cu6( 3 b )4](PF6)6.  相似文献   
993.
Molecules with permanent porosity in the solid state have been studied for decades. Porosity in these systems is governed by intrinsic pore space, as in cages or macrocycles, and extrinsic void space, created through loose, intermolecular solid-state packing. The development of permanently porous molecular materials, especially cages with organic or metal–organic composition, has seen increased interest over the past decade, and as such, incredibly high surface areas have been reported for these solids. Despite this, examples of these materials being explored for gas storage applications are relatively limited. This minireview outlines existing molecular systems that have been investigated for gas storage and highlights strategies that have been used to understand adsorption mechanisms in porous molecular materials.  相似文献   
994.
Understanding of crystallization mechanisms of molecular sieves is driven by the broad range of usefulness and unique properties they possess. It is still difficult to obtain information related to the crystallization mechanism of molecular sieves, partly because the materials are generally prepared under hydrothermal conditions and the whole reaction happens in the “black box” autoclave. In this work, 2D 1H DQ-SQ NMR results clearly demonstrate that it is not only the electrostatic interactions between organic structure-directing agents (OSDAs) and the framework, but also the correlation among OSDAs playing the dominant structural directing roles during the crystallization process. Our fundamental understanding of the crystallization mechanism of molecular sieves could be of great value to design and synthesize new molecular sieves with desirable structural properties.  相似文献   
995.
The degradation pathways of highly active [Cp*Ir(κ2-N,N-R-pica)Cl] catalysts (pica=picolinamidate; 1 R=H, 2 R=Me) for formic acid (FA) dehydrogenation were investigated by NMR spectroscopy and DFT calculations. Under acidic conditions (1 equiv. of HNO3), 2 undergoes partial protonation of the amide moiety, inducing rapid κ2-N,N to κ2-N,O ligand isomerization. Consistently, DFT modeling on the simpler complex 1 showed that the κ2-N,N key intermediate of FA dehydrogenation ( INH ), bearing a N-protonated pica, can easily transform into the κ2-N,O analogue ( INH2 ; ΔG≈11 kcal mol−1, ΔG ≈−5 kcal mol−1). Intramolecular hydrogen liberation from INH2 is predicted to be rather prohibitive (ΔG≈26 kcal mol−1, ΔG≈23 kcal mol−1), indicating that FA dehydrogenation should involve mostly κ2-N,N intermediates, at least at relatively high pH. Under FA dehydrogenation conditions, 2 was progressively consumed, and the vast majority of the Ir centers (58 %) were eventually found in the form of Cp*-complexes with a pyridine-amine ligand. This likely derived from hydrogenation of the pyridine-carboxiamide via a hemiaminal intermediate, which could also be detected. Clear evidence for ligand hydrogenation being the main degradation pathway also for 1 was obtained, as further confirmed by spectroscopic and catalytic tests on the independently synthesized degradation product 1 c . DFT calculations confirmed that this side reaction is kinetically and thermodynamically accessible.  相似文献   
996.
The reactions of [Re(N-N)(CO)3(PMe3)]OTf (N-N=2,2′-bipyridine, bipy; 1,10-phenanthroline, phen) compounds with tBuLi and with LiHBEt3 have been explored. Addition to the N-N chelate took place with different site-selectivity depending on both chelate and nucleophile. Thus, with tBuLi, an unprecedented addition to C5 of bipy, a regiochemistry not accessible for free bipy, was obtained, whereas coordinated phen underwent tBuLi addition to C2 and C4. Remarkably, when LiHBEt3 reacted with [Re(bipy)(CO)3(PMe3)]OTf, hydride addition to the 4 and 6 positions of bipy triggered an intermolecular cyclodimerization of two dearomatized pyridyl rings. In contrast, hydride addition to the phen analog resulted in partial reduction of one pyridine ring. The resulting neutral ReI products showed a varied reactivity with HOTf and with MeOTf to yield cationic complexes. These strategies rendered access to ReI complexes containing bipy- and phen-derived chelates with several C(sp3) centers.  相似文献   
997.
A new class of amphipathic cyclic peptides, which assemble in bacteria membranes to form polymeric supramolecular nanotubes giving them antimicrobial properties, is described. The method is based on the use of two orthogonal clickable transformations to incorporate different hydrophobic or hydrophilic moieties in a simple, regioselective, and divergent manner. The resulting cationic amphipathic cyclic peptides described in this article exhibit strong antimicrobial properties with a broad therapeutic window. Our studies suggest that the active form is the nanotube resulted from the parallel stacking of the cyclic peptide precursors. Several techniques, CD, FTIR, fluorescence, and STEM, among others, confirm the nanotube formation.  相似文献   
998.
Cyanine dyes carrying quinoline moieties are an important class of organic molecules that are of great interest for applications in many fields like medicine, pharmacology, and engineering. Despite their exceptional properties, such as stability, high molar extinction coefficients, and high pH-sensitivity, this class of dyes has been less analyzed and reviewed in the last few decades. Therefore, this review article focuses on discussing the history of quinoline compounds, various synthetic routes to prepare quinolinium salts and symmetrical and asymmetrical mono-, di-, tri-, penta- and heptamethine cyanine dyes, containing quinoline moieties, together with their optical properties and applications as photosensitizers in photodynamic therapy, probes in biomolecules for labeling of nucleic acids, as well as imaging agents.  相似文献   
999.
Six hybrid uranyl–transition metal compounds [UO2Ni(cptpy)2(HCOO)2(DMF)(H2O)] ( 1 ), [UO2Ni(cptpy)2(BTPA)2] ( 2 ), [UO2Fe(cptpy)2(HCOO)2(DMF)(H2O)] ( 3 ), [UO2Fe(cptpy)2(BTPA)2] ( 4 ), [UO2Co(cptpy)2(HCOO)2(DMF)(H2O)] ( 5 ), and [UO2Co(cptpy)2(BTPA)2] ( 6 ), based on bifunctional ligand 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine (Hcptpy) are reported (H2BTPA = 4,4′-biphenyldicarboxylic acid). Single-crystal XRD revealed that all six compounds feature similar metalloligands, which consist of two cptpy anions and one transition metal cation. The metalloligand M(cptpy)2 can be considered to be an extended linear dicarboxylic ligand with length of 22.12 Å. Compounds 1 , 3 , and 5 are isomers, and all of them feature 1D chain structures. The adjacent 1D chains are connected together by hydrogen bonds and π–π interactions to form a 3D porous structure, which is filled with solvent molecules and can be exchanged with I2. Compounds 2 , 4 , and 6 are also isomers, and all of them feature 2D honeycomb (6,3) networks with hexagonal units of dimensions 41.91×26.89 Å, which are the largest among uranyl compounds with honeycomb networks. The large aperture allows two sets of equivalent networks to be entangled together to result in a 2D+2D→3D polycatenated framework. Remarkably, these uranyl compounds exhibit high catalytic activity for cycloaddition of carbon dioxide. Moreover, the geometric and electronic structures of compounds 1 and 2 are systematically discussed on the basis of DFT calculations.  相似文献   
1000.
The composite hydrogel of a nanoscale metal–organic framework (NMOF) and nanoclay has emerged as a new soft-material with advanced properties and applications. Herein, we report a facile synthesis of a hydrogel nanocomposite by charge-assisted self-assembly of Pd@ZIF-8 nanoparticles with Laponite® nanoclay which coat the surface of Pd@ZIF-8 nanoparticles. Such surface coating significantly enhanced the thermal stability of the ZIF-8 compared to the pristine framework. Further, the Pd@ZIF-8+LP hydrogel nanocomposite shows better size-selective catalytic hydrogenation of olefins than Pd@ZIF-8 nanoparticles based on selective diffusion of the substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号