首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42639篇
  免费   18109篇
  国内免费   55篇
化学   55006篇
晶体学   53篇
力学   2030篇
数学   2630篇
物理学   1084篇
  2024年   157篇
  2023年   4075篇
  2022年   1423篇
  2021年   2471篇
  2020年   4616篇
  2019年   2302篇
  2018年   2271篇
  2017年   591篇
  2016年   5562篇
  2015年   5515篇
  2014年   4935篇
  2013年   5130篇
  2012年   3172篇
  2011年   1013篇
  2010年   3391篇
  2009年   3351篇
  2008年   1011篇
  2007年   733篇
  2006年   96篇
  1997年   80篇
  1995年   140篇
  1994年   87篇
  1993年   212篇
  1992年   98篇
  1989年   78篇
  1988年   117篇
  1987年   100篇
  1986年   79篇
  1985年   100篇
  1984年   105篇
  1983年   101篇
  1982年   127篇
  1981年   154篇
  1980年   194篇
  1979年   184篇
  1978年   189篇
  1977年   309篇
  1976年   362篇
  1975年   456篇
  1974年   471篇
  1973年   284篇
  1972年   369篇
  1971年   355篇
  1970年   541篇
  1969年   413篇
  1968年   456篇
  1967年   114篇
  1966年   89篇
  1965年   83篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
971.
DNA computation is considered a fascinating alternative to silicon-based computers; it has evoked substantial attention and made rapid advances. Besides realizing versatile functions, implementing spatiotemporal control of logic operations, especially at the cellular level, is also of great significance to the development of DNA computation. However, developing simple and efficient methods to restrict DNA logic gates performing in live cells is still a challenge. In this work, a series of DNA logic gates was designed by taking full advantage of the diversity and programmability of the G-quadruplex (G4) structure. More importantly, by further using the high affinity and specific endocytosis of cells to aptamer G4, an INHIBIT logic gate has been realized whose operational site is precisely restricted to specific live cells. The design strategy might have great potential in the field of molecular computation and smart bio-applications.  相似文献   
972.
Supramolecular main group chemistry is a developing field which parallels the conventional domain of metallo-organic chemistry. Little explored building blocks in this area are main group metal-based ligands which have the appropriate donor symmetry to build desired molecular or extended arrangements. Tris(pyridyl) main group ligands (E(py)3, E=main group metal) are potentially highly versatile building blocks since shifting the N-donor arms from the 2- to the 3-positions and 4-positions provides a very simple way of changing the ligand character from mononuclear/chelating to multidentate/metal-bridging. Here, the coordination behaviour of the first main group metal tris(4-pyridyl) ligands, E(4-py)3 (E=Sb, Bi, Ph−Sn) is explored, as well as their ability to build metal-organic frameworks (MOFs). The complicated topology of these MOFs shows a marked influence on the counter anion and on the ability of the E(4-py)3 ligands to switch coordination mode, depending on the steric and donor character of the bridgehead. This structure-directing influence of the bridgehead provides a potential building strategy for future molecular and MOF design in this area.  相似文献   
973.
The synthesis of 2,9-diaza-1,3,8,10-tetratriflato-dibenzoperylene (DDP 3 a ) and corresponding 2,9-dimethyl-1,3,8,10-tetratriflato-dibenzoperylene (DBP 3 b ) has been developed at multigram scale via reduction of one of the industrially most important high-performance dyes, perylene-3,4,9,10-tetracarboxylic diimide (PTCDI), and of the corresponding dihydroxy peropyrenequinone precursor. The focus of this paper is on the reactivity pattern of 3 a as key intermediate towards highly functionalized 2,9-diazadibenzopyrelenes (DDPs) obtained via catalytic substitution of four triflate by aryl, heteroaryl, alkynyl, aminyl, and O-phosphanyl substituents. The influence of electron-donating substituents (OSiMe3, OPt-Bu2, N-piperidinyl), electron-withdrawing (OTf, 3,5-bis-trifluoromethyl-phenyl), and of electron-rich π-conjugated (2-thienyl, 4-tert-butylphenyl, trimethylsilyl-ethynyl) substituents on optoelectronic and structural properties of these functionalized DDPs has been investigated via XRD analyses, UV/Vis, PL spectroscopy, and by electroanalytical CV. These results were correlated to results of DFT and TD-DFT calculations. Thus, functionalized DPPs with easily tunable HOMO and LUMO energies and gap became available via a new and reliable synthetic strategy starting from readily available PTCDI.  相似文献   
974.
Hybrid gel beads based on combining a low-molecular-weight gelator (LMWG) with a polymer gelator (PG) demonstrate an enhanced ability to self-propel in water, with the LMWG playing an active role. Hybrid gel beads were loaded with ethanol and shown to move in water owing to the Marangoni effect changes in surface tension caused by the expulsion of ethanol – smaller beads move farther and faster than larger beads. Flat shapes of the hybrid gel were cut using a “stamp” – circles moved the furthest, whereas stars showed more rotation on their own axes. Comparing hybrid LMWG/PG gel beads with PG-only beads demonstrated that the LMWG speeds up the beads, enhancing the rate of self-propulsion. Self-assembly of the LMWG into a “solid-like” network prevents its leaching from the gel. The LMWG also retains its own unique function – specifically, remediating methylene blue pollutant dye from basic water as a result of noncovalent interactions. The mobile hybrid beads accumulate this dye more effectively than PG-only beads. Self-propelling gel beads have potential applications in removal/delivery of active agents in environmental or biological settings. The ability of self-assembling LMWGs to enhance mobility and control removal/delivery suggests that adding them to self-propelling systems can add significant value.  相似文献   
975.
The assembly of ancient informational polymers from nucleotide precursors is the central challenge of life's origin on our planet. Among the possible solutions, dry polymerization of 3’,5’-cyclic guanosine monophosphate (3’,5’-cGMP) has been proposed as a candidate to create oligonucleotides of 15–20 units in length. However, the reported sensitivity of the reaction to the presence of cations raised questions of whether this chemistry could be relevant in a geological context. The experiments in this study show that the presence of cations is not restrictive as long as the reaction is conducted in an acidic environment, in contrast to previous reports that suggested optimal conditions at pH 9.  相似文献   
976.
977.
A mechanistic density functional theory study of acetylene [2+2+2] cyclotrimerization to benzene catalyzed by RhI half metallocenes is presented. The catalyst fragment contains a heteroaromatic ligand, that is, the 1,2‐azaborolyl (Ab) or the 3a,7a‐azaborindenyl (Abi) anions, which are isostructural and isoelectronic to the hydrocarbon cyclopentadienyl (Cp) and indenyl (Ind) anions, respectively, but differ from the last ones on having two adjacent carbon atoms replaced with a boron and a nitrogen atom. The better performance of either the classic hydrocarbon or the heteroaromatic catalysts is found to depend on the different mechanistic paths that can be envisioned for the process. The present analyses uncover and explain general structure–reactivity relationships that may serve as rational design principles. In particular, we provide evidence of a reverse indenyl effect.  相似文献   
978.
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号