Optically active chiral alkyl chlorides are valuable compounds because of their bioactivity and versatile synthetic utility. Accordingly, the ring opening of epoxides with a chloride nucleophile stands as an important goal in asymmetric catalysis. We describe herein recent advances in the design and development of chiral pyridine N‐oxide catalysts for the enantioselective synthesis of chlorohydrins. 相似文献
Catalytic cyclization : The Hg(OTf)2‐catalyzed N‐selective cyclization of amide carbonyl moieties for the construction of a quaternary carbon center was developed. The Hg(OTf)2‐catalyzed cyclization of cyclopentylidene alcohol with acylhydrazide afforded the desired cyclopenta[c]pyridazinone in good yield. The subsequent eight steps gave the functionalized cyclopentane with the correct stereochemistry that corresponds to the E ring of palau′amine (see scheme).
Double the fun! Singlet–triplet dual emission at ambient temperature has been achieved in compounds containing a triarylboron acceptor and an N‐(2′‐pyridyl)‐7‐azaindolyl donor group bridged by a tetrahedral Si linker (see figure). PtII chelation and chelate‐mode switching from N,N to N,C have been found to greatly enhance phosphorescent emission. Furthermore, both singlet and triplet emission bands are responsive to fluoride ions.
Programmable organic light‐emitting diodes: UV irradiation converts an oxetane‐functionalized dithienylethene derivative from its colorless open form into a dark blue closed form, while visible light reverses the reaction. In the Communication on page 4038 ff., K. Meerholz and co‐workers describe a reversibly switchable organic light‐emitting diode based on this principle.
Systemic change : A system of transformations between helical structures was observed to be governed by interactions mediated by the electronic effects of substituents, entropic effects, the conformational preferences of organic building blocks, and the coordinative preferences of the metal ion. All of these effects were important, but all must be considered together to allow the prediction of the product observed (see scheme).
We have designed and synthesised a series of modular, mesogenic complexes based on anthracene‐2,6‐disulfonate and trialkoxybenzyl‐functionalised imidazolium cations. Each complex contains a central, rigid, dianionic anthracene core and two flexible monocations bearing paraffin chains anchored on imidazolium rings. Anthracene‐2,6‐disulfonate can be crystallised with various simple alkylammonium ions and, in the case of +N(CH3)2(C16H33)2, a crystal structure determination has shown that the long paraffinic chains are intercalated between the anthracene moieties. The dianion forms columnar mesophases with trialkoxybenzylimidazolium cations, as identified by polarising optical microscopy and X‐ray scattering measurements. Differential scanning calorimetry studies confirmed mesomorphic behaviour from room temperature to about 200 °C for alkyl chains containing 8, 12 and 16 carbon atoms. The strong luminescence of anthracene is maintained in the mesophase and fluorescence measurements confirmed the presence of J aggregates in all cases. The new functional materials described herein provide an easy access to stable and luminescent mesomorphic materials engineered by an ionic self‐assembly process. 相似文献
Finely tuned: Carbon nanotubes are exposed to a CF4 radio‐frequency plasma (see picture). High‐resolution photoelectron spectroscopy shows that the treatment effectively grafts fluorine atoms onto the MWCNTs, altering the valence electronic states. Fluorine surface concentration can be tuned by varying the exposure time.
An extensive study of the redox properties of metal nitride endohedral fullerenes (MNEFs) based on DFT computational calculations has been performed. The electronic structure of the singly oxidized and reduced MNEFs has been thoroughly analyzed and the first anodic and cathodic potentials, as well as the electrochemical gaps, have been predicted for a large number of M3N@C2n systems (M=Sc, Y, La, and Gd; 2n=80, 84, 88, 92, and 96). In particular, calculations that include thermal and entropic effects correctly predict the different anodic behavior of the two isomers (Ih and D5h) of Sc3N@C80, which is the basis for their electrochemical separation. Important differences were found in the electronic structure of reduced M3N@C80 when M=Sc or when M is a more electropositive metal, such as Y or Gd. Moreover, the changes in the electrochemical gaps within the Gd3N@C2n series (2n=80, 84, and 88) have been rationalized and the use of Y‐based computational models to study the Gd‐based systems has been justified. The redox properties of the largest MNEFs characterized so far, La3N@C2n (2n=92 and 96), were also correctly predicted. Finally, the quality of these predictions and their usefulness in distinguishing the carbon cages for MNEFs with unknown structures is discussed. 相似文献
An efficient and convenient α‐hydroxyallylation approach for the asymmetric synthesis of a variety of β‐amino‐α‐vinyl alcohols has been successfully developed. A wide range of vinylic amino alcohol derivatives could be obtained in very good yields and with excellent diastereomeric ratios of up to 99:1 in favor of anti isomers by highly diastereoselective Zn‐promoted benzoyloxyallylation of chiral N‐tert‐butanesulfinyl imines with 3‐bromopropenyl benzoate at room temperature. In particular, excellent enantioinduction of the two new stereogenic centers was observed, with up to 98 % ee. The method provides a new route for the direct α‐hydroxyallylation of imines in a highly stereoselective manner. Moreover, the synthetic value of the method has also been demonstrated by the most concise and straightforward synthesis of (?)‐cytoxazone yet reported. 相似文献