首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47003篇
  免费   15690篇
  国内免费   62篇
化学   56317篇
晶体学   74篇
力学   2056篇
数学   2744篇
物理学   1564篇
  2024年   374篇
  2023年   4084篇
  2022年   1446篇
  2021年   2481篇
  2020年   4623篇
  2019年   2323篇
  2018年   2279篇
  2017年   601篇
  2016年   5581篇
  2015年   5535篇
  2014年   4959篇
  2013年   5187篇
  2012年   3244篇
  2011年   1105篇
  2010年   3442篇
  2009年   3400篇
  2008年   1109篇
  2007年   827篇
  2006年   191篇
  2005年   162篇
  2004年   114篇
  1996年   109篇
  1995年   150篇
  1994年   106篇
  1993年   234篇
  1992年   124篇
  1989年   107篇
  1988年   144篇
  1987年   125篇
  1986年   109篇
  1985年   126篇
  1984年   134篇
  1983年   115篇
  1982年   141篇
  1981年   178篇
  1980年   209篇
  1979年   193篇
  1978年   212篇
  1977年   323篇
  1976年   380篇
  1975年   481篇
  1974年   485篇
  1973年   304篇
  1972年   373篇
  1971年   357篇
  1970年   546篇
  1969年   425篇
  1968年   480篇
  1967年   119篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 7 毫秒
101.
The utilization of a single-atom catalyst to break C−C bonds merges the merits of homogeneous and heterogeneous catalysis and presents an intriguing pathway for obtaining high-value-added products. Herein, a mild, selective, and sustainable oxidative cleavage of alkene to form oxime ether or nitrile was achieved by using atomically dispersed cobalt catalyst and hydroxylamine. Diversified substrate patterns, including symmetrical and unsymmetrical alkenes, di- and tri-substituted alkenes, and late-stage functionalization of complex alkenes were demonstrated. The reaction was successfully scaled up and demonstrated good performance in recycling experiments. The hot filtration test, catalyst poisoning and radical scavenger experiment, time kinetics, and studies on the reaction intermediate collectively pointed to a radical mechanism with cobalt/acid/O2 promoted C−C bond cleavage as the key step.  相似文献   
102.
Dithienopyrazines are only scarcely used as building blocks in organic electronic materials. Here, we report efficient preparation and investigation of syn- and anti-dithienopyrazines, which were functionalized with triaraylamine units to provide different series of donor-acceptor-donor-type materials. The characterization of the optoelectronic properties resulted in valuable structure-property relationships and allowed for the elucidation of the influence of structural effects such as core structure (syn vs anti), type of substituents (directly arylated vs ethynylated aryl), and substitution pattern (α,α’- vs β,β’- vs fourfold substitution). Finally, first application of a dithienopyrazine derivative as model for hole-transport materials tailored for organic electronic devices has been realized.  相似文献   
103.
An enantioselective phosphine-catalyzed [3+2] cycloaddition between aza-aurones and allenoates is here described. The reaction proceeded under mild reaction conditions to afford 2-spirocyclopentyl indolin-3-one derivatives as single γ-isomer and with high levels of stereocontrol.  相似文献   
104.
4-Azafluorenones are typically obtained by acid-mediated cyclization of 2-arylnicotinates. However, this approach fails to give 5-oxygenated 4-azafluorenones due to lactonization of 2-(2-alkoxy)phenylnicotinate intermediates. Herein, we report two modifications of established approaches to 4-azafluorenone synthesis that, either in combination or by themselves, enable the flexible preparation of 4-azafluorenones with diverse oxygenation patterns in the benzenoid ring. Undesired lactonization was circumvented via tert-butyl hydroperoxide (TBHP)-mediated radical cyclization of 2-aryl-3-(hydroxymethyl)pyridines. In the absence of suitable protecting groups for phenolic intermediates, bromide substituents were regioselectively introduced as latent hydroxy groups and later converted under palladium catalysis. We present the first total syntheses of five 4-azafluorenone alkaloids muniranine, darienine, 5,8-dimethoxy-7-hydroxyonychine, 5,6,7,8-tetramethoxyonychine, and 6,8-dihydroxy-7-methoxyonychine in addition to new total syntheses of six 4-azafluorenone alkaloids and one related pyridocoumarin alkaloid.  相似文献   
105.
Cyclic peptides are important molecules, playing key roles in protein architecture, as chemical probes, and increasingly as crucial structural elements of clinically-useful therapeutics. Herein we report methodology using azodicarboxylates as efficient reagents for the facile synthesis of cyclic peptides through a disulfide bridge. The utility of this approach in both solution and solid-phase, and compatibility with common amino acid side chain functionalities is demonstrated, resulting in cyclic peptides in good yield and purity. This approach has significant potential application for synthesis of molecules of biological or therapeutic significance.  相似文献   
106.
Carbon-fluorine bonds are stable and have demonstrated sluggishness against various chemical manipulations. However, selective transformations of C−F bonds can be achieved by developing appropriate conditions as useful synthetic methods in organic chemistry. This review focuses on C−C bond formation at monofluorinated sp3-hybridized carbons via C−F bond cleavage, including cross-coupling and multi-component coupling reactions. The C−F bond cleavage mechanisms on the sp3-hybridized carbon centers can be primarily categorized into three types: Lewis acids promoted F atom elimination to generate carbocation intermediates; nucleophilic substitution with metal or carbon nucleophiles supported by the activation of C−F bonds by coordination of Lewis acids; and the cleavage of C−F bonds via a single electron transfer. The characteristic features of alkyl fluorides, in comparison with other (pseudo)halides as promising electrophilic coupling counterparts, are also discussed.  相似文献   
107.
Some literature reports have shown the existence of short Hg(II)⋅⋅⋅d8[M] (M=Pd, Pt) contacts between linear Hg(II) and square planar d8[M] complexes that have been defined as heterometallophilic interactions. Linear L−Hg(II)−L complexes exhibit a π-hole or positive belt of electrostatic potential at the Hg atom, whereas late transition metals can serve as effective electron donors through their filled dz2 orbitals. This study provides compelling evidence that Hg(II)⋅⋅⋅d8[M] interactions should be more appropriately termed spodium bonds.  相似文献   
108.
Catalytic, chemoselective, and asymmetric α-functionalizations of carboxylic acids promise up-grading simple feedstock materials to value-added functional molecules, as well as late-stage structural diversifications of multifunctional molecules, such as drugs and their leads. In this personal account, we describe boron-catalyzed α-functionalizations of carboxylic acids developed in our group (five reaction types). The reversible boron carboxylate formation is key to the acidification of the α-protons and enolization using mild organic bases, allowing for chemoselective and asymmetric bond formations of carboxylic acids. The ligand effects on reactivity and stereoselectivity, substrate scopes, and mechanistic insights are summarized.  相似文献   
109.
This research endeavors to overcome the significant challenge of developing materials that simultaneously possess photostability and photosensitivity to UV-visible irradiation. Sulfurized nanorod (NR)-like ZnO/Zn(OH)2 and hierarchical flower-like γ-Zn(OH)2/ϵ-Zn(OH)2 were identified from XRD diffraction patterns and Raman vibrational modes. The sulfurized material, observed by FEG-SEM and TEM, showed diameters ranging from 10 and 40 nm and lengths exceeding 200 nm. The S2− ions intercalated Zn2+, modulating NRs to dumbbell-like microrods. SAED and HRTEM illustrated the atomic structure in (101) crystal plane. Its direct band gap of 3.0 eV was attributed to the oxygen vacancies, which also contribute to the deep-level emissions at 422 and 485 nm. BET indicated specific surface area of 4.4 m2 g−1 and pore size as mesoporosity, which are higher compared to the non-sulfurized analogue. These findings were consistent with the observed photocurrent, photostability and photoluminescence (PL), further supporting the suitability of sulfurized NR-like ZnO/Zn(OH)2 as a promising candidate for Luminescent solar concentrators (LSC)-photovoltaic (PV) system.  相似文献   
110.
The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3NH3PbI3 and C60 with and without the modification of PbI2 using in situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3NH3PbI3/C60 interface with the modification of PbI2 as compared to that without PbI2. Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3NH3PbI3/C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号