首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42853篇
  免费   18111篇
  国内免费   54篇
化学   55171篇
晶体学   51篇
力学   2030篇
数学   2629篇
物理学   1137篇
  2024年   157篇
  2023年   4075篇
  2022年   1419篇
  2021年   2471篇
  2020年   4620篇
  2019年   2305篇
  2018年   2273篇
  2017年   594篇
  2016年   5565篇
  2015年   5519篇
  2014年   4935篇
  2013年   5130篇
  2012年   3181篇
  2011年   1026篇
  2010年   3398篇
  2009年   3356篇
  2008年   1024篇
  2007年   743篇
  2006年   114篇
  2005年   86篇
  1997年   86篇
  1996年   85篇
  1995年   141篇
  1994年   86篇
  1993年   215篇
  1992年   100篇
  1988年   119篇
  1987年   100篇
  1986年   86篇
  1985年   102篇
  1984年   109篇
  1983年   102篇
  1982年   131篇
  1981年   158篇
  1980年   196篇
  1979年   186篇
  1978年   191篇
  1977年   313篇
  1976年   363篇
  1975年   456篇
  1974年   474篇
  1973年   289篇
  1972年   369篇
  1971年   355篇
  1970年   541篇
  1969年   413篇
  1968年   442篇
  1967年   114篇
  1966年   89篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
The atroposelective formation of C−N bonds has recently emerged within the field of amination reactions. On first sight, it may seem quite surprising that such an ancient class of organic coupling reactions (Gabriel, Ullmann, Goldberg, Buchwald, Hartwig and many others) has so few enantioselective solutions, and this in spite of asymmetric synthesis being now a mature concept and field. Why should enantioselective C−N bond formation be so difficult? This question and some of the first examples that promise an imminent change of paradigm are herein discussed.  相似文献   
972.
In this study, we have demonstrated a two-legged, upright molecular design method for monochromatic and bright red luminescent LnIII-silica nanomaterials. A novel EuIII-silica hybrid nanoparticle was developed by using a doubly binding TPPO−Si(OEt)3 (TPPO: triphenyl phosphine oxide) linker. The TPPO−Si(OEt)3 was confirmed by 1H, 31P, 29Si NMR spectroscopy and single-crystal X-ray analysis. Luminescent Eu(hfa)3 and Eu(tfc)3 moieties (hfa: hexafluoroacetylacetonate, tfc: 3-(trifluoromethylhydroxymethylene)camphorate) were fixed onto TPPO−Si(OEt)3-modified silica nanoparticles, producing Eu(hfa)3(TPPO−Si)2-SiO2 and Eu(tfc)3(TPPO−Si)2-SiO2, respectively. Eu(hfa)3(TPPO−Si)2−SiO2 exhibited the higher intrinsic luminescence quantum yield (93 %) and longer emission lifetime (0.98 ms), which is much larger than those of previously reported EuIII-based hybrid materials. Eu(tfc)3(TPPO−Si)2−SiO2 showed an extra-large intrinsic emission quantum yield (54 %), although the emission quantum yield for the precursor Eu(tfc)3(TPPO−Si(OEt)3)2 was found to be 39 %. These results confirmed that the TPPO−Si(OEt)3 linker is a promising candidate for development of EuIII-based luminescent materials.  相似文献   
973.
The nickel(0)-catalyzed carbonylative cycloaddition of 1,5- and 1,6-ene-imines with carbon monoxide (CO) is reported. Key to this reaction is the efficient regeneration of the catalytically active nickel(0) species from nickel carbonyl complexes such as [Ni(CO)3L]. A variety of tri- and tetracyclic γ-lactams were thus prepared in excellent yields with 100 % atom efficiency. Preliminary results on asymmetric derivatives promise potential in the synthesis of enantioenriched polycyclic γ-lactams.  相似文献   
974.
We report the synthesis of conceptually new prototypes of molecular winches with the ultimate aim to investigate the work performed by a single ruthenium-based molecular motor anchored on a surface by probing its ability to pull a load upon electrically-driven directional rotation. According to a technomimetic design, the motor was embedded in a winch structure, with a long flexible polyethylene glycol chain terminated by an azide hook to connect a variety of molecular loads. The structure of the motor was first derivatized by means of two sequential cross-coupling reactions involving a penta(4-halogenophenyl)cyclopentadienyl hydrotris(indazolyl)borate ruthenium(II) precursor and the resulting benzylamine derivative was next exploited as key intermediate in the divergent synthesis of a family of nanowinch prototypes. A one-pot method involving sequential peptide coupling and Cu-catalyzed azide-alkyne cycloaddition was developed to yield four loaded nanowinches, with load fragments encompassing triptycene, fullerene and porphyrin moieties.  相似文献   
975.
976.
Mitomycin C, (MC), an antitumor drug, is a DNA alkylating agent currently used in the clinics. Inert in its native form, MC is reduced to reactive mitosenes, which undergo nucleophilic attack by guanine or adenine bases in DNA to form monoadducts as well as interstrand crosslinks (ICLs). Although ICLs are considered the most cytotoxic lesions, the role of each individual adduct in the drug's cytotoxicity is still not fully understood. Synthetic routes have been developed to access modified oligonucleotides containing dG MC-monoadducts and dG-MC-dG ICL at a single position of their base sequences to investigate the biological effects of these adducts. However, until now, oligonucleotides containing monoadducts formed by MC at the adenine base had not been available, thus preventing the examination of the role played by these lesions in the toxicity of MC. Here, we present a route to access these substrates. Structural proof of the adducted oligonucleotides were provided by enzymatic digestion to nucleosides and high-resolution mass spectral analysis. Additionally, parent oligonucleotides containing a dG monoadduct and a dG-MC-dG ICL were also produced. The stability and physical properties of all substrates were compared via CD spectroscopy and UV melting temperature studies. Finally, virtual models were created to explore the conformational space and structural features of these MC-DNA complexes.  相似文献   
977.
978.
979.
Lithium metal anodes (LMAs) with high energy density have recently captured increasing attention for development of next-generation batteries. However, practical viability of LMAs is hindered by the uncontrolled Li dendrite growth and infinite dimension change. Even though constructing 3D conductive skeleton has been regarded as a reliable strategy to prepare stable and low volume stress LMAs, engineering the renewable and lithiophilic conductive scaffold is still a challenge. Herein, a robust conductive scaffold derived from renewable cellulose paper, which is coated with reduced graphene oxide and decorated with lithiophilic Au nanoparticles, is engineered for LMAs. The graphene cellulose fibres with high surface area can reduce the local current density, while the well-dispersed Au nanoparticles can serve as lithiophilic nanoseeds to lower the nucleation overpotential of Li plating. The coupled relationship can guarantee uniform Li nucleation and unique spherical Li growth into 3D carbon matrix. Moreover, the natural cellulose paper possesses outstanding mechanical strength to tolerate the volume stress. In virtue of the modulated deposition behaviour and near-zero volume change, the hybrid LMAs can achieve reversible Li plating/stripping even at an ultrahigh current density of 10 mA cm−2 as evidenced by high Coulombic efficiency (97.2 % after 60 cycles) and ultralong lifespan (1000 cycles) together with ultralow overpotential (25 mV). Therefore, this strategy sheds light on a scalable approach to multiscale design versatile Li host, promising highly stable Li metal batteries to be feasible and practical.  相似文献   
980.
DNA computation is considered a fascinating alternative to silicon-based computers; it has evoked substantial attention and made rapid advances. Besides realizing versatile functions, implementing spatiotemporal control of logic operations, especially at the cellular level, is also of great significance to the development of DNA computation. However, developing simple and efficient methods to restrict DNA logic gates performing in live cells is still a challenge. In this work, a series of DNA logic gates was designed by taking full advantage of the diversity and programmability of the G-quadruplex (G4) structure. More importantly, by further using the high affinity and specific endocytosis of cells to aptamer G4, an INHIBIT logic gate has been realized whose operational site is precisely restricted to specific live cells. The design strategy might have great potential in the field of molecular computation and smart bio-applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号