首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47729篇
  免费   18142篇
  国内免费   74篇
化学   58368篇
晶体学   111篇
力学   2102篇
数学   2865篇
物理学   2499篇
  2024年   157篇
  2023年   4077篇
  2022年   1427篇
  2021年   2492篇
  2020年   4650篇
  2019年   2356篇
  2018年   2311篇
  2017年   623篇
  2016年   5616篇
  2015年   5576篇
  2014年   5005篇
  2013年   5341篇
  2012年   3399篇
  2011年   1267篇
  2010年   3532篇
  2009年   3483篇
  2008年   1285篇
  2007年   967篇
  2006年   352篇
  2005年   311篇
  2004年   290篇
  2003年   229篇
  2002年   230篇
  2001年   186篇
  2000年   177篇
  1997年   145篇
  1995年   181篇
  1994年   149篇
  1993年   299篇
  1992年   189篇
  1988年   186篇
  1987年   171篇
  1986年   153篇
  1985年   201篇
  1984年   201篇
  1982年   195篇
  1981年   225篇
  1980年   259篇
  1979年   245篇
  1978年   242篇
  1977年   373篇
  1976年   414篇
  1975年   495篇
  1974年   519篇
  1973年   314篇
  1972年   386篇
  1971年   368篇
  1970年   549篇
  1969年   425篇
  1968年   458篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
973.
974.
975.
976.
977.
Continuous-flow multi-step synthesis takes the advantages of microchannel flow chemistry and may transform the conventional multi-step organic synthesis by using integrated synthetic systems. To realize the goal, however, innovative chemical methods and techniques are urgently required to meet the significant remaining challenges. In the past few years, by using green reactions, telescoped chemical design, and/or novel in-line separation techniques, major and rapid advancement has been made in this direction. This minireview summarizes the most recent reports (2017–2020) on continuous-flow synthesis of functional molecules. Notably, several complex active pharmaceutical ingredients (APIs) have been prepared by the continuous-flow approach. Key technologies to the successes and remaining challenges are discussed. These results exemplified the feasibility of using modern continuous-flow chemistry for complex synthetic targets, and bode well for the future development of integrated, automated artificial synthetic systems.  相似文献   
978.
We present a computational analysis of hexaphenylethane derivatives with heavier tetrels comprising the central bond. In stark contrast to parent hexaphenylethane, the heavier tetrel derivatives can readily be prepared. In order to determine the origin of their apparent thermodynamic stability against dissociation as compared to the carbon case, we employed local energy decomposition analysis (LED) and symmetry-adapted perturbation theory (SAPT) at the DLPNO-CCSD(T)/def2-TZVP and sSAPT0/def2-TZVP levels of theory. We identified London dispersion (LD) interactions as the decisive factor for the molecular stability of heavier tetrel derivatives. This stability is made possible owing to the longer (than C−C) central bonds that move the phenyl groups out of the heavily repulsive regime so they can optimally benefit from LD interactions.  相似文献   
979.
Mono- and di-nuclear tricarbonyl Re(I) tetraazaporphyrin complexes ( Re1TAP and Re2TAP ) are investigated and compared with Re(I) phthalocyanine complexes ( Re1Pc and Re2Pc ). Although Re2Pc is unstable in polar solvents, and easily undergoes demetallation reaction, the coordination of the TAP ligand significantly improves the tolerance toward polar solvents, affording more stability to Re2TAP . Additionally, the incorporation of [Re(CO)3]+ unit(s) and the TAP ligand results in remarkable positive shifts in both oxidation and reduction potentials. Consequently, the more positive oxidation potentials of the ReTAP complexes significantly increase the tolerance toward oxidation, while the reduction potential indicates that Re2TAP is suitable for a soluble electron acceptor. In contrast to Re1Pc and Re2Pc , Re1TAP and Re2TAP show unique broad Q bands, which can be attributed to the admixture of the π-π* and metal-to-ligand charge transfer characters, owing to the lowered π orbital energy in the TAP complexes. This study is useful for controlling electronic properties and realizing high stability in Pc analogues.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号