首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56857篇
  免费   17596篇
  国内免费   1371篇
化学   63054篇
晶体学   213篇
力学   2705篇
综合类   112篇
数学   4007篇
物理学   5733篇
  2024年   399篇
  2023年   4288篇
  2022年   1956篇
  2021年   2998篇
  2020年   5118篇
  2019年   2834篇
  2018年   2702篇
  2017年   1014篇
  2016年   6112篇
  2015年   6087篇
  2014年   5575篇
  2013年   5982篇
  2012年   4194篇
  2011年   2080篇
  2010年   4099篇
  2009年   4018篇
  2008年   1723篇
  2007年   1375篇
  2006年   651篇
  2005年   563篇
  2004年   461篇
  2003年   396篇
  2002年   339篇
  2001年   294篇
  2000年   218篇
  1999年   276篇
  1998年   227篇
  1997年   259篇
  1996年   256篇
  1995年   292篇
  1994年   201篇
  1993年   287篇
  1992年   168篇
  1991年   144篇
  1988年   156篇
  1982年   137篇
  1981年   164篇
  1980年   207篇
  1979年   186篇
  1978年   193篇
  1977年   310篇
  1976年   368篇
  1975年   459篇
  1974年   473篇
  1973年   286篇
  1972年   371篇
  1971年   357篇
  1970年   542篇
  1969年   413篇
  1968年   456篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
911.
The introduction of RbF into the Mg(NH2)2–2 LiH system significantly decreased its (de‐)hydrogenation temperatures and enhanced its hydrogen‐storage kinetics. The Mg(NH2)2–2 LiH–0.08 RbF composite exhibits the optimal hydrogen‐storage properties as it could reversibly store approximately 4.76 wt % hydrogen through a two‐stage reaction with the onset temperatures of 80 °C for dehydrogenation and 55 °C for hydrogenation. At 130 °C, approximately 70 % of hydrogen was rapidly released from the 0.08 RbF‐doped sample within 180 min, and the fully dehydrogenated sample could absorb approximately 4.8 wt % of hydrogen at 120 °C. Structural analyses revealed that RbF reacted readily with LiH to convert to RbH and LiF owing to the favorable thermodynamics during ball‐milling. The newly generated RbH participated in the following dehydrogenation reaction, consequently resulting in a decrease in the reaction enthalpy change and activation energy.  相似文献   
912.
A new bridging ligand, 2,3‐di(2‐pyridyl)‐5‐phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN‐CNN‐type coordination mode. The reaction of dpppzH with cis‐[(bpy)2RuCl2] (bpy=2,2′‐bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)]2+ ( 12+ ) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)]3+ ( 23+ ) was prepared from complex 12+ and [(Mebip)RuCl3] (Mebip=bis(N‐methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C?CPh)]2+ ( 42+ ) has been prepared from complex 12+ , in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 12+ is emissive at room temperature, with an emission λmax=695 nm. No emission was detected for complex 23+ at room temperature in MeCN, whereas complex 42+ displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3‐di(2‐pyridyl)‐5,6‐diphenylpyrazine.  相似文献   
913.
The direct transfer of single‐crystalline Au nanowires (NWs) onto Au substrates was achieved by a simple attachment and detachment process. In the presence of a lubricant, Au NWs grown vertically on a sapphire substrate were efficiently moved to an Au substrate through van der Waals interactions. We demonstrate that the transferred Au NWs on the Au substrate can act as sensitive, reproducible, and long‐term‐stable surface‐enhanced Raman scattering (SERS) sensors by detecting human α‐thrombin as well as Pb2+ and Hg2+ ions. These three biochemically and/or environmentally important analytes were successfully detected with high sensitivity and selectivity by Au NW‐SERS sensors bound by a thrombin‐binding aptamer. Furthermore, the as‐prepared sensors remained in working order after being stored under ambient conditions at room temperature for 80 days. Because Au NWs can be routinely transferred onto Au substrates and because the resultant Au NW‐SERS sensors are highly stable and provide with high sensitivity and reproducibility of detection, these sensors hold potential for practical use in biochemical sensing.  相似文献   
914.
915.
The stereoselective direct transformation of N‐(propargylic)hydroxylamines into cis‐2‐acylaziridines was achieved by the combined use of AgBF4 and CuCl. Copper salts were found to promote the transformation of the intermediary 4‐isoxazolines into 2‐acylaziridines and both 3‐aryl‐ and 3‐alkyl‐substituted 2‐acylaziridines could be prepared by using this method. Furthermore, subsequent 1,3‐dipolar cycloaddition of azomethine ylides that were generated in situ from the intermediary 2‐acylaziridines with maleimides was achieved in a stereoselective one‐pot procedure to afford the corresponding 2‐acylpyrrolidines, which consisted of an octahydropyrrolo[3,4‐c]pyrrole skeleton.  相似文献   
916.
A simple protocol that uses [OsIII(OH)(H2O)(L ‐N4Me2)](PF6)2 ( 1 ; L ‐N4Me2=N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)pyridinophane) as a catalyst and H2O2 as a terminal oxidant for efficient cis‐1,2‐dihydroxylation of alkenes is presented. Unfunctionalized (or aliphatic) alkenes and alkenes/styrenes containing electron‐withdrawing groups are selectively oxidized to the corresponding vicinal diols in good to excellent yields (46–99 %). In the catalytic reactions, the stoichiometry of alkene:H2O2 is 1:1, and thus the oxidant efficiency is very high. For the dihydroxylation of cyclohexene, the catalytic amount of 1 can be reduced to 0.01 mol % to achieve a very high turnover number of 5500. The active oxidant is identified as the OsV(O)(OH) species ( 2 ), which is formed via the hydroperoxide adduct, an OsIII(OOH) species. The active oxidant 2 is successfully isolated and crystallographically characterized.  相似文献   
917.
By taking advantage of UV‐Raman spectroscopy and high‐resolution TEM (HRTEM), combined with the focused ion beam (FIB) technique, the transformation from GaOOH into α‐Ga2O3 and then into β‐Ga2O3 was followed. We found that the stepwise transformations took place from the surface region before developing into the bulk of single particles without particle agglomeration and growth. During the transformation from GaOOH into α‐Ga2O3, the elimination of water vapor through the dehydroxylation of GaOOH resulted in the formation of micropores in the single particles, whilst maintaining their particle size. For the phase transformation from α‐Ga2O3 into β‐Ga2O3, the nucleation of β‐Ga2O3 was found to occur at the surface defects and this process could be retarded by occupying these defects with a small amount of La2O3. By finely controlling the process of the phase transformation, the β‐Ga2O3 domains gradually developed from the surface into the bulk of the single particles without particle agglomeration. Therefore, the surface structure of the α‐Ga2O3 single particles can be easily tuned and a particle with an α@β core–shell phase structure has been obtained.  相似文献   
918.
Herein, we present three imidazo[1,2‐a]pyridin‐2(3 H)‐one derivatives that are diamagnetic in solution, but paramagnetic in the solid state, possibly owing to a stacking‐induced formation of phenoxide‐type radicals. Notably, a larger bathochromic shift of the absorption (even up to the near‐ infrared region) of these three compounds was observed in the solid state than in solution, which was attributable to the ordered columnar stacking arrangements or their single‐electron character as radicals in the solid state. Interestingly, compared to that in solution, (E)‐3‐(pyridin‐4′‐ylmethylene)imidazo[1,2‐a]pyridine 2(3 H)‐one displayed a largely red‐shifted emission (centered at 660 nm, with tailing above 800 nm) in the solid state. A larger bathochromic shift (260 nm) of the emission is an indication of better order and tight stacking in the solid state, which is brought about by the rigid and polar acceptor. These three compounds also reveal different magnetic susceptibilities at 300 K, thus implying that they possess various columnar stacking structures. Most interestingly, these three radicals exhibit unusual ferromagnetic‐to‐antiferromagnetic phase transitions, which can be attributed to anisotropic contraction and non‐uniform slippage of the columnar stacking chains.  相似文献   
919.
A reactive template method was used to fabricate alginate‐based hydrogel microcapsules. The uniform and well‐dispersed hydrogel capsules have a high drug loading capacity. After they are coated by a folate‐linked lipid mixture on the surface, the capsules possess higher cell uptake efficiency by the molecule recognition between folate and the folate‐receptor overexpressed by the cancer cells. Moreover, in this bioconjugate, the lipid could remarkably reduce the release rate of hydrophilic doxorubicin from the hydrogel microcapsules and encapsulate the hydrophobic photosensitizer hypocrellin B. The biointerfaced capsules could be used as drug carriers for combined treatment against cancer cell proliferation in vitro; this was much more effective than chemotherapy or photodynamic therapy alone.  相似文献   
920.
We report two new 3D structures, [Zn3(bpdc)3(2,2′‐dmbpy)] (DMF)x(H2O)y ( 1 ) and [Zn3(bpdc)3(3,3′‐dmbpy)]?(DMF)4(H2O)0.5 ( 2 ), by methyl functionalization of the pillar ligand in [Zn3(bpdc)3(bpy)] (DMF)4?(H2O) ( 3 ) (bpdc=biphenyl‐4,4′‐dicarboxylic acid; z,z′‐dmbpy=z,z′‐dimethyl‐4,4′‐bipyridine; bpy=4,4′‐bipyridine). Single‐crystal X‐ray diffraction analysis indicates that 2 is isostructural to 3 , and the power X‐ray diffraction (PXRD) study shows a very similar framework of 1 to 2 and 3 . Both 1 and 2 are 3D porous structures made of Zn3(COO)6 secondary building units (SBUs) and 2,2′‐ or 3,3′‐dmbpy as pillar ligand. Thermogravimetric analysis (TGA) and PXRD studies reveal high thermal and water stability for both compounds. Gas‐adsorption studies show that the reduction of surface area and pore volume by introducing a methyl group to the bpy ligand leads to a decrease in H2 uptake for both compounds. However, CO2 adsorption experiments with 1′ (guest‐free 1 ) indicate significant enhancement in CO2 uptake, whereas for 2′ (guest‐free 2 ) the adsorbed amount is decreased. These results suggest that there are two opposing and competitive effects brought on by methyl functionalization: the enhancement due to increased isosteric heats of CO2 adsorption (Qst), and the detraction due to the reduction of surface area and pore volume. For 1′ , the enhancement effect dominates, which leads to a significantly higher uptake of CO2 than its parent compound 3′ (guest‐free 3 ). For 2′ , the detraction effect predominates, thereby resulting in reduced CO2 uptake relative to its parent structure 3′ . IR and Raman spectroscopic studies also present evidence for strong interaction between CO2 and methyl‐functionalized π moieties. Furthermore, all compounds exhibit high separation capability for CO2 over other small gases including CH4, CO, N2, and O2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号