首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64453篇
  免费   21747篇
  国内免费   2372篇
化学   69589篇
晶体学   283篇
力学   3292篇
综合类   120篇
数学   4910篇
物理学   10378篇
  2024年   435篇
  2023年   4366篇
  2022年   2254篇
  2021年   3325篇
  2020年   5411篇
  2019年   3164篇
  2018年   3067篇
  2017年   1340篇
  2016年   6633篇
  2015年   6507篇
  2014年   6155篇
  2013年   6721篇
  2012年   5161篇
  2011年   3077篇
  2010年   4729篇
  2009年   4624篇
  2008年   2494篇
  2007年   1962篇
  2006年   1277篇
  2005年   1026篇
  2004年   790篇
  2003年   566篇
  2002年   598篇
  2001年   464篇
  2000年   397篇
  1999年   464篇
  1998年   325篇
  1997年   411篇
  1996年   371篇
  1995年   405篇
  1994年   304篇
  1993年   441篇
  1992年   251篇
  1991年   234篇
  1990年   189篇
  1988年   205篇
  1981年   180篇
  1980年   220篇
  1979年   194篇
  1978年   202篇
  1977年   323篇
  1976年   379篇
  1975年   471篇
  1974年   483篇
  1973年   299篇
  1972年   374篇
  1971年   362篇
  1970年   548篇
  1969年   421篇
  1968年   471篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
A new approach has been developed to improve SO2 sorption by cyano‐containing ionic liquids (ILs) through tuning the basicity of ILs and cyano–sulfur interaction. Several kinds of cyano‐containing ILs with different basicity were designed, prepared, and used for SO2 capture. The interaction between these cyano‐containing ILs and SO2 was investigated by FTIR and NMR methods. Spectroscopic investigations and quantum chemical calculations showed that dramatic effects on SO2 capacity originate from the basicity of the ILs and enhanced cyano–sulfur interaction. Furthermore, the captured SO2 was easy to release by heating or bubbling N2 through the ILs. This efficient and reversible process, achieved by tuning the basicity of ILs, is an excellent alternative to current technologies for SO2 capture.  相似文献   
52.
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar"structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns.The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively.The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material.In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.  相似文献   
53.
The metallacarborane [3,3′‐Co(1,2‐closo‐C2B9H11)2]? has been synthesized. This species allows the formation of redox couples in which both partners are negatively charged. The E1/2 potential can be tuned by adjusting the nature and number of substituents on B and C. The octaiodinated species [3,3′‐Co(1,2‐closo‐C2B9H7I4)2]? is the most favorable, as it is isolatable and stable in air. A DFT study on stability and redox potentials of complexes has been performed.  相似文献   
54.
A new A, D-seco limonoid, named 12-acetyloxyperforatin (1), along with three known ones, were isolated from the leaves of Harrisonia perforata. Their structures were elucidated on the basis of spectroscopic analysis, including extensive NMR techniques and computational modelling. These compounds showed no inhibitory activity against the 11β-HSD1 enzyme.  相似文献   
55.
56.
Journal of Radioanalytical and Nuclear Chemistry - In the present work the final products of coumarin radiation chemical transformation are investigated by chromatography. During radiolysis of...  相似文献   
57.
Particularly-shaped silver nanostructures are successfully applied in many scientific fields, such as nanotechnology, catalysis, (nano)engineering, optoelectronics, and sensing. In recent years, the production of shape-controlled silver-based nanostructures and the knowledge around this topic has grown significantly. Hence, on the basis of the most recent results reported in the literature, a critical analysis around the driving forces behind the synthesis of such nanostructures are proposed herein, pointing out the important role of surface-regulating agents in driving crystalline growth by favoring (or opposing) development along specific directions. Additionally, growth mechanisms of the different morphologies considered here are discussed in depth, and critical points highlighted.  相似文献   
58.
59.
The biologically active alkaloid muscimol is present in fly agaric mushroom (Amanita muscaria), and its structure and action is related to human neurotransmitter γ-aminobutyric acid (GABA). The current study reports on determination of muscimol form present in water solution using multinuclear 1H and 13C nuclear magnetic resonance (NMR) experiments supported by density functional theory molecular modeling. The structures of three forms of free muscimol molecule both in the gas phase and in the presence of water solvent, modeled by polarized continuous model, and nuclear magnetic isotropic shieldings, the corresponding chemical shifts, and indirect spin–spin coupling constants were calculated. Several J-couplings observed in proton and carbon NMR spectra, not available before, are reported. The obtained experimental spectra, supported by theoretical calculations, favor the zwitterion form of muscimol in water. This structure differs from NH isomer, previously determined in dimethyl sulfoxide (DMSO) solution. In addition, positions of signals C3 and C5 are reversed in both solvents.  相似文献   
60.
Recently, the potential use of organic π-radicals and related spin systems has been expanded to modern technological applications. The unique excited-state dynamics of organic π-radicals can be useful to improve the stability of photochemically unstable organic compounds, make the polarization transfer applicable to information technology, and achieve effective up-conversion of interest for luminescence bioimaging, among others. Furthermore, highly luminescent stable π-radicals have been recently reported, which are especially interesting for application in organic light-emitting devices owing to their potential to provide an internal quantum efficiency of 100 %. Thus, the excited-state nature of stable π-radicals as well as the control of their excited-state spin dynamics are emerging topics both in terms of fundamental science and related technological applications. In this minireview, we focus on the excited-state dynamics of both photostable non(weakly)-luminescent and luminescent π-radicals, which are opposites of each other. In particular, we cover the following topics: 1) effective generation of high-spin photoexcited states and control of the excited-state dynamics by using non-luminescent π-radicals, 2) unique excited-state dynamics of luminescent π-radicals and radical excimers, and 3) applications utilizing excited-state dynamics of π-radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号