首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44135篇
  免费   18143篇
  国内免费   58篇
化学   55844篇
晶体学   57篇
力学   2099篇
数学   2870篇
物理学   1466篇
  2024年   157篇
  2023年   4076篇
  2022年   1440篇
  2021年   2505篇
  2020年   4655篇
  2019年   2329篇
  2018年   2304篇
  2017年   630篇
  2016年   5615篇
  2015年   5574篇
  2014年   4994篇
  2013年   5199篇
  2012年   3316篇
  2011年   1198篇
  2010年   3484篇
  2009年   3398篇
  2008年   1149篇
  2007年   848篇
  2006年   199篇
  2005年   143篇
  2004年   100篇
  1997年   85篇
  1996年   88篇
  1995年   143篇
  1994年   90篇
  1993年   217篇
  1992年   103篇
  1988年   117篇
  1987年   99篇
  1985年   102篇
  1984年   108篇
  1983年   102篇
  1982年   129篇
  1981年   156篇
  1980年   196篇
  1979年   185篇
  1978年   190篇
  1977年   309篇
  1976年   361篇
  1975年   457篇
  1974年   473篇
  1973年   285篇
  1972年   369篇
  1971年   355篇
  1970年   541篇
  1969年   413篇
  1968年   456篇
  1967年   114篇
  1966年   89篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 781 毫秒
891.
Samarium(II) iodide enables a wide range of highly chemoselective umpolung radical transformations proceeding by electron transfer to carbonyl groups; however, cyclizations of important nitrogen‐containing precursors have proven limited due to their prohibitive redox potential. Herein, we report the first reductive cyclizations of unactivated cyclic imides onto N‐tethered olefins using SmI2/H2O. This new umpolung protocol leads to the rapid synthesis of nitrogen‐containing heterocycles that are of particular significance as precursors to pharmaceutical pharmacophores and numerous classes of alkaloids. The reaction conditions tolerate a wide range of functional groups. Excellent chemoselectivity is observed in the cyclization over amide and ester functional groups. Such unconventional reactivity has important implications for the design and optimization of new bond‐forming reactions by umpolung radical processes. The reaction advances the SmI2 cyclization platform to the challenging unactivated N‐tethered acyl‐type radical precursors to access nitrogen‐containing architectures.  相似文献   
892.
By using complementary experimental techniques and first‐principles theoretical calculations, magnetic anisotropy in a series of five hexacoordinated nickel(II) complexes possessing a symmetry close to C2v, has been investigated. Four complexes have the general formula [Ni(bpy)X2]n+ (bpy=2,2′‐bipyridine; X2=bpy ( 1 ), (NCS?)2 ( 2 ), C2O42? ( 3 ), NO3? ( 4 )). In the fifth complex, [Ni(HIM2‐py)2(NO3)]+ ( 5 ; HIM2‐py=2‐(2‐pyridyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazolyl‐1‐hydroxy), which was reported previously, the two bpy bidentate ligands were replaced by HIM2‐py. Analysis of the high‐field, high‐frequency electronic paramagnetic resonance (HF‐HFEPR) spectra and magnetization data leads to the determination of the spin Hamiltonian parameters. The D parameter, corresponding to the axial magnetic anisotropy, was negative (Ising type) for the five compounds and ranged from ?1 to ?10 cm?1. First‐principles SO‐CASPT2 calculations have been performed to estimate these parameters and rationalize the experimental values. From calculations, the easy axis of magnetization is in two different directions for complexes 2 and 3 , on one hand, and 4 and 5 , on the other hand. A new method is proposed to calculate the g tensor for systems with S=1. The spin Hamiltonian parameters (D (axial), E (rhombic), and gi) are rationalized in terms of ordering of the 3 d orbitals. According to this orbital model, it can be shown that 1) the large magnetic anisotropy of 4 and 5 arises from splitting of the eg‐like orbitals and is due to the difference in the σ‐donor strength of NO3? and bpy or HIM2‐py, whereas the difference in anisotropy between the two compounds is due to splitting of the t2g‐like orbitals; and 2) the anisotropy of complexes 1 – 3 arises from the small splitting of the t2g‐like orbitals. The direction of the anisotropy axis can be rationalized by the proposed orbital model.  相似文献   
893.
Highly selective tandem nucleophilic addition/cross‐coupling reactions of alkynes have been developed using visible‐light‐promoted dual gold/photoredox catalysis. The simultaneous oxidation of AuI and coordination of the coupling partner by photo‐generated aryl radicals, and the use of catalytically inactive gold precatalysts allows for high levels of selectivity for the cross‐coupled products without competing hydrofunctionalization or homocoupling. As demonstrated in representative arylative Meyer–Schuster and hydration reactions, this work expands the scope of dual gold/photoredox catalysis to the largest class of substrates for gold catalysts and benefits from the mild and environmentally attractive nature of visible‐light activation.  相似文献   
894.
We present herein the preparation of four different hydrogels based on the pseudopeptide gelator Fmoc‐l ‐Phe‐d ‐Oxd‐OH (Fmoc=fluorenylmethyloxycarbonyl), either by changing the gelator concentration or adding graphene oxide (GO) to the water solution. The hydrogels have been analysed by rheological studies that demonstrated that pure hydrogels are slightly stronger compared to GO‐loaded hydrogels. Then the hydrogels efficiency to trap the cationic methylene blue (MB) and anionic eosin Y (EY) dyes has been analyzed. MB is efficiently trapped by both the pure hydrogel and the GO‐loaded hydrogel through π–π interactions and electrostatic interactions. In contrast, the removal of the anionic EY is achieved in less satisfactory yields, due to the unfavourable electrostatic interactions between the dye, the gelator and GO.  相似文献   
895.
Dense and homogeneous metal–organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core–shell beads. The ZnO@PS beads are reactive in the presence of 2‐methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework‐8 (ZIF‐8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF‐8@ZnO@PS beads can be easily packed in column format for flow‐through applications, such as the solid‐phase extraction of trace priority‐listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4‐tert‐octylphenol and 4‐n‐nonylphenol), facilitating their analysis when present at very low levels (<1 μg L?1) in drinking waters. For the extraction of the pollutant bisphenol A, the prepared ZIF‐8@ZnO@PS beads also show a superior extraction and preconcentration capacity to that of the PS beads used as precursors and the composite materials obtained by the direct growth of ZIF‐8 on the surface of the PS beads in the absence of metal oxide intermediate coatings.  相似文献   
896.
Cyclic arylene ethynylene hexamer 1 , composed of alternating 2,7‐anthrylene ethynylene units and meta‐phenylene ethynylene units, was synthesized. It shows C3 symmetry and possesses a flat and rigid conformation with a large equilateral triangle‐like cavity. Macrocycle 1 self‐associates through π–π stacking interactions between the anthracene‐containing macrocyclic aromatic cores with indefinite‐association constant KE=6980 m ?1 in CDCl3 at 303 K. Macrocycle 1 also self‐assembles into π‐stacked nanofibers in the drop‐cast film.  相似文献   
897.
898.
899.
A proof‐of‐concept design for autonomous, self‐propelling motors towards value‐added product synthesis and separation is presented. The hybrid motor design consists of two distinct functional blocks. The first, a sodium borohydride (NaBH4) granule, serves both as a reaction prerequisite for the reduction of vanillin and also as a localized solid‐state fuel in the reaction mixture. The second capping functional block consisting of a graphene–polymer composite serves as a hydrophobic matrix to attract the reaction product vanillyl alcohol (VA), resulting in facile separation of this edible value‐added product. These autonomously propelled motors were fabricated at a length scale down to 400 μm, and once introduced in the reaction environment showed rapid bubble‐propulsion followed by high‐purity separation of the reaction product (VA) by the virtue of the graphene–polymer cap acting as a mesoporous sponge. The concept has excellent potential towards the synthesis/isolation of industrially important compounds, affinity‐based product separation, pollutant remediation (such as heavy metal chelation/adsorption), as well as localized fuel‐gradients as an alternative to external fuel dependency.  相似文献   
900.
Macroscopic and spatially ordered motions of self‐assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter‐scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self‐assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号