首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45359篇
  免费   18156篇
  国内免费   80篇
化学   56819篇
晶体学   62篇
力学   2086篇
数学   3158篇
物理学   1470篇
  2024年   157篇
  2023年   4087篇
  2022年   1472篇
  2021年   2558篇
  2020年   4656篇
  2019年   2377篇
  2018年   2304篇
  2017年   633篇
  2016年   5657篇
  2015年   5582篇
  2014年   5021篇
  2013年   5233篇
  2012年   3387篇
  2011年   1252篇
  2010年   3522篇
  2009年   3465篇
  2008年   1221篇
  2007年   936篇
  2006年   280篇
  2005年   260篇
  2004年   175篇
  2003年   146篇
  2002年   120篇
  1997年   106篇
  1996年   108篇
  1995年   159篇
  1993年   224篇
  1992年   105篇
  1988年   123篇
  1987年   104篇
  1985年   109篇
  1984年   115篇
  1983年   106篇
  1982年   133篇
  1981年   158篇
  1980年   197篇
  1979年   184篇
  1978年   191篇
  1977年   313篇
  1976年   361篇
  1975年   457篇
  1974年   474篇
  1973年   287篇
  1972年   369篇
  1971年   355篇
  1970年   542篇
  1969年   413篇
  1968年   456篇
  1967年   115篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
971.
Macroscopic and spatially ordered motions of self‐assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter‐scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self‐assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry.  相似文献   
972.
High‐level incorporation of Ag in Au nanoclusters (NCs) is conveniently achieved by controlling the concentration of Ag+ in the synthesis of bovine serum albumin (BSA)‐protected Au NCs, and the resulting structure is determined to be bimetallic Ag28Au10‐BSA NCs through a series of characterizations including energy‐dispersive X‐ray spectroscopy, mass spectroscopy, and X‐ray photoelectron spectroscopy, together with density functional theory simulations. Interestingly, the Ag28Au10 NCs exhibit a significant fluorescence redshift rather than quenching upon interaction with hydrogen peroxide, providing a new approach to the detection of hydrogen peroxide through direct comparison of their fluorescence peaks. Furthermore, the Ag28Au10 NCs are also used for the sensitive and selective detection of herbicide through fluorescence enhancement. The detection limit for herbicide (0.1 nm ) is far below the health value established by the U.S. Environmental Protection Agency; such sensitive detection was not achieved by using AuAg NCs with low‐level incorporation of Ag or by using the individual metal NCs.  相似文献   
973.
Trans carbamates have been prepared in a diastereoselective approach by a judicious one‐pot combination of organic carbonates, prepared in situ, and suitable amine reagents under appropriate reaction conditions. This unprecedented approach allows for stereodivergence from a single oxirane substrate with easy access to both cis and trans carbamate isomers with high stereoselectivity (>19:1 d.r.). Key to the control of the diastereoselective nature of the conversions that lead to the trans carbamates is the in situ formation of trans‐configured oligo/polycarbonates through Al catalysis, which provides the targeted products after aminolysis. The present results demonstrate the valorization of a renewable carbon‐based reagent (CO2) into new valuable scaffolds and an unusual stereocontrol exerted through carbonate intermediates. A series of control experiments support the proposed mechanistic rationale towards the trans carbamate products, which is based on the trapping of an in situ formed trans‐configured oligo/polycarbonate.  相似文献   
974.
Amphiphilic polycarbonate–poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)‐b‐poly(β‐malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring‐opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD), associated with iPrOH as an initiator, provided iPrO?PTMC?OH, which served as a macroinitiator in the controlled ROP of benzyl β‐malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO?PTMC‐b‐PMLABe?OH copolymers were then hydrogenolyzed into the parent iPrO?PTMC‐b‐PMLA?OH copolymers. A range of well‐defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol?1; ÐM=1.28–1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC‐b‐PMLA copolymers with different hydrophilic weight fractions (11–75 %) self‐assembled in phosphate‐buffered saline upon nanoprecipitation into well‐defined nano‐objects with Dh=61–176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta‐potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC‐b‐PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.  相似文献   
975.
976.
The selective transformation of C?H bonds is one of the most desirable approaches to creating complexity from simple building blocks. Several directing groups are efficient in controlling the regioselectivity of catalytic C?H bond functionalizations. Among them, carboxylic acids are particularly advantageous, since they are widely available in great structural diversity and at low cost. The carboxylate directing groups can be tracelessly cleaved or may serve as the anchor point for further functionalization through decarboxylative couplings. This Minireview summarizes the substantial progress made in the last few years in the development of reactions in which carboxylate groups direct C?H bond functionalizations with formation of C?C, C?O, C?N, or C?halogen bonds at specific positions. It is divided into sections on C?C, C?O, C?N, and C?halogen bond formation, each of which is subdivided by reactions and product classes. Particular emphasis is placed on methods that enable multiple derivatizations by combining carboxylate‐directed C?H functionalization with decarboxylative couplings.  相似文献   
977.
978.
Nile red and Nile blue are highly fluorescent and photostable organic dyes from the benzo[a]phenoxazine family. They have been used as histological stains for imaging lysosomes and lipids in vitro. The dyes’ high quantum yields and solvent‐dependent optical properties make them ideal scaffolds for the development of pH probes and local polarity indicators. Reviews of the literature in this area are scarce with only one review ever published in 2006. It has been 10 years since and the field has evolved. This review aims to expand upon topics covered by the previous reviewers and to report on recent advances in the literature. As authors, we hope to convey a sense of scope and to spark renewed interest in this useful niche of dye chemistry.  相似文献   
979.
A general synthetic route was used to prepare 15 new N‐heterocyclic carbene (NHC)–AgI complexes bearing anionic carboxylate ligands [Ag(NHC)(O2CR)], including a homologous series of complexes of sterically flexible ITent ligands, which permit a systematic spectroscopic and theoretical study of the structural and electronic features of these compounds. The complexes displayed a significant ligand‐accelerated effect in the intramolecular cyclisation of propargylic amides to oxazolidines. The substrate scope is highly complementary to that previously achieved by NHC–Au and pyridyl–AgI complexes.  相似文献   
980.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号