首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56510篇
  免费   18248篇
  国内免费   107篇
化学   64326篇
晶体学   143篇
力学   2274篇
综合类   1篇
数学   5278篇
物理学   2843篇
  2024年   374篇
  2023年   4094篇
  2022年   1478篇
  2021年   2513篇
  2020年   4706篇
  2019年   2423篇
  2018年   2338篇
  2017年   664篇
  2016年   5742篇
  2015年   5659篇
  2014年   5150篇
  2013年   5627篇
  2012年   3543篇
  2011年   1433篇
  2010年   3663篇
  2009年   3592篇
  2008年   1452篇
  2007年   1144篇
  2006年   540篇
  2005年   491篇
  2004年   416篇
  2003年   413篇
  2002年   402篇
  2001年   299篇
  1997年   269篇
  1996年   270篇
  1995年   330篇
  1993年   400篇
  1992年   293篇
  1989年   276篇
  1988年   320篇
  1987年   294篇
  1985年   380篇
  1984年   382篇
  1983年   274篇
  1982年   337篇
  1981年   373篇
  1980年   456篇
  1979年   429篇
  1978年   427篇
  1977年   564篇
  1976年   575篇
  1975年   641篇
  1974年   637篇
  1973年   485篇
  1972年   478篇
  1971年   461篇
  1970年   628篇
  1969年   452篇
  1968年   511篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Fluorine substituents in transition metal catalysts are of great importance in olefin polymerization catalysis; however, the comprehensive effect of fluorine substituents is elusive in seminal late transition metal α-diimine catalytic system. In this contribution, fluorine substituents at various positions (ortho-, meta-, and para-F) and with different numbers (Fn; n=0, 1, 2, 3, 5) were installed into the well-defined N-terphenyl amine and thus were studied for the first time in the nickel α-diimine promoted ethylene polymerization and copolymerization with polar monomers. The position of the fluorine substituent was particularly crucial in these polymerization reactions in terms of catalytic activity, polymer molecular weight, branching density, and incorporation of polar monomer, and thus a picture on the fluorine effect was given. As a notable result, the ortho-F substituted α-diimine nickel catalyst produced highly linear polyethylenes with an extremely high molecular weight (Mw=8703 kDa) and a significantly low degree of branching of 1.4/1000 C; however, the meta-F and/or para-F substituted α-diimine nickel catalysts generated highly branched (up to 80.2/1000 C) polyethylenes with significantly low molecular weights (Mw=20-50 kDa).  相似文献   
992.
The way chemical transformations are described by models based on microscopic reversibility does not take into account the irreversibility of natural processes, and therefore, in complex chemical networks working in open systems, misunderstandings may arise about the origin and causes of the stability of non-equilibrium stationary states, and general constraints on evolution in systems that are far from equilibrium. In order to be correctly simulated and understood, the chemical behavior of complex systems requires time-dependent models, otherwise the irreversibility of natural phenomena is overlooked. Micro reversible models based on the reaction-coordinate model are time invariant and are therefore unable to explain the evolution of open dissipative systems. The important points necessary for improving the modeling and simulations of complex chemical systems are: a) understanding the physical potential related to the entropy production rate, which is in general an inexact differential of a state function, and b) the interpretation and application of the so-called general evolution criterion (GEC), which is the general thermodynamic constraint for the evolution of dissipative chemical systems.  相似文献   
993.
The reversible addition of olefins to a phosphanylalumane, P−Al single-bond species, was investigated. The P−Al bond added to ethylene and relatively small terminal alkenes (propylene and hex-1-ene) at room temperature to give the corresponding alkene adducts. Heating the terminal alkene adducts released the corresponding alkenes and regenerated the P−Al bond, but no release of ethylene was observed even under vacuum conditions. The reactivity of ethylene adduct as a new saturated C2 vicinal P/Al-based FLP was also investigated. The ethylene adduct was found to undergo complexation with nitriles to give the corresponding nitrile adducts to the Al center, which retained the ethylene tether as in the case of the corresponding P/B-based FLP. However, the reactivity of ethylene toward CO2 and benzaldehyde differed from that of the P/B system giving the corresponding adducts.  相似文献   
994.
The synthesis of 2,9-diaza-1,3,8,10-tetratriflato-dibenzoperylene (DDP 3 a ) and corresponding 2,9-dimethyl-1,3,8,10-tetratriflato-dibenzoperylene (DBP 3 b ) has been developed at multigram scale via reduction of one of the industrially most important high-performance dyes, perylene-3,4,9,10-tetracarboxylic diimide (PTCDI), and of the corresponding dihydroxy peropyrenequinone precursor. The focus of this paper is on the reactivity pattern of 3 a as key intermediate towards highly functionalized 2,9-diazadibenzopyrelenes (DDPs) obtained via catalytic substitution of four triflate by aryl, heteroaryl, alkynyl, aminyl, and O-phosphanyl substituents. The influence of electron-donating substituents (OSiMe3, OPt-Bu2, N-piperidinyl), electron-withdrawing (OTf, 3,5-bis-trifluoromethyl-phenyl), and of electron-rich π-conjugated (2-thienyl, 4-tert-butylphenyl, trimethylsilyl-ethynyl) substituents on optoelectronic and structural properties of these functionalized DDPs has been investigated via XRD analyses, UV/Vis, PL spectroscopy, and by electroanalytical CV. These results were correlated to results of DFT and TD-DFT calculations. Thus, functionalized DPPs with easily tunable HOMO and LUMO energies and gap became available via a new and reliable synthetic strategy starting from readily available PTCDI.  相似文献   
995.
Understanding the factors governing the formation of supramolecular structures and phase transitions between various forms of molecular crystals is pivotal for developing dynamic, stimuli-responsive materials and polymorph-controlled syntheses. Here, we investigate the pressure-induced dynamic of both the intrinsic molecular structure and the supramolecular network of a predesigned polyhedral oxo-centered zinc cluster incorporating monoanionic N,N’-diphenylformamidinate and featuring N-bonded phenyl groups in close proximity to the primary coordination sphere. We demonstrate that the model oxo cluster is prone to undergoing pressure-induced conformational transformations of the secondary coordination sphere and simultaneous stepwise (initially every second polyhedral molecule undergoes the conformational transformations) and reversible transitions from an ambient phase α to high-pressure phases β and γ, as single-crystal-to-single-crystal events. The observed phase transitions illustrate the key role of an interplay between the low-energy conformation perturbations and cooperative intra- and intermolecular noncovalent interactions.  相似文献   
996.
A series of novel energetic materials comprising of azo-bridged furoxanylazoles enriched with energetic functionalities was designed and synthesized. These high-energy materials were thoroughly characterized by IR and multinuclear NMR (1H, 13C, 14N) spectroscopy, high-resolution mass spectrometry, elemental analysis, and differential scanning calorimetry (DSC). The molecular structures of representative amino and azo oxadiazole assemblies were additionally confirmed by single-crystal X-ray diffraction and X-ray powder diffraction. A comparison of contributions of explosophoric moieties into the density of energetic materials revealed that furoxan and 1,2,4-oxadiazole rings are the densest motifs while the substitution of the azide and amino fragments on the nitro and azo ones leads to an increase of the density. Azo bridged energetic materials have high nitrogen-oxygen contents (68.8–76.9 %) and high thermal stability. The synthesized compounds exhibit good experimental densities (1.62–1.88 g cm−3), very high enthalpies of formation (846–1720 kJ mol−1), and, as a result, excellent detonation performance (detonation velocities 7.66–9.09 km s−1 and detonation pressures 25.0–37.7 GPa). From the application perspective, the detonation parameters of azo oxadiazole assemblies exceed those of the benchmark explosive RDX, while a combination of high detonation performance and acceptable friction sensitivity of azo(1,2,4-triazolylfuroxan) make it a promising potential alternative to PETN.  相似文献   
997.
Mitochondria are key organelles that perform vital cellular functions such as those related to cell survival and death. The targeted delivery of different types of cargos to mitochondria is a well-established strategy to study mitochondrial biology and diseases. Of the various existing mitochondrion-transporting vehicles, most suffer from poor cytosolic entry, low delivery efficiency, limited cargo types, and cumbersome preparation protocols, and none was known to be universally applicable for mitochondrial delivery of different types of cargos (small molecules, proteins, and nanomaterials). Herein, two new cell-penetrating, mitochondrion-targeting ligands (named MitoLigand) that are capable of effectively “tagging” small-molecule drugs, native proteins and nanomaterials are disclosed, as well as their corresponding chemoselective conjugation chemistry. Upon successful cellular delivery and rapid endosome escape, the released native cargos were found to be predominantly localized inside mitochondria. Finally, by successfully delivering doxorubicin, a well-known anticancer drug, to the mitochondria of HeLa cells, we showed that the released drug possessed potent cell cytotoxicity, disrupted the mitochondrial membrane potential and finally led to apoptosis. Our strategy thus paves the way for future mitochondrion-targeted therapy with a variety of biologically active agents.  相似文献   
998.
Barium complexes ligated by bulky boryloxides [OBR2] (where R=CH(SiMe3)2, 2,4,6-iPr3-C6H2 or 2,4,6-(CF3)3-C6H2), siloxide [OSi(SiMe3)3], and/or phenoxide [O-2,6-Ph2-C6H3], have been prepared. A diversity of coordination patterns is observed in the solid state for both homoleptic and heteroleptic complexes, with coordination numbers ranging between 2 and 4. The identity of the bridging ligand in heteroleptic dimers [Ba(μ2-X1)(X2)]2 depends largely on the given pair of ligands X1 and X2. Experimentally, the propensity to fill the bridging position increases according to [OB{CH(SiMe3)2}2)]<[N(SiMe3)2]<[OSi(SiMe3)3]<[O(2,6-Ph2-C6H3)]<[OB(2,4,6-iPr3-C6H2)2]. This trend is the overall expression of 3 properties: steric constraints, electronic density and σ- and π-donating capability of the negatively charged atom, and ability to generate Ba ⋅ ⋅ ⋅ F, Ba ⋅ ⋅ ⋅ C(π) or Ba ⋅ ⋅ ⋅ H−C secondary interactions. The comparison of the structural motifs in the complexes [Ae{μ2-N(SiMe3)2}(OB{CH(SiMe3)2}2)]2 (Ae = Mg, Ca, Sr and Ba) suggest that these observations may be extended to all alkaline earths. DFT calculations highlight the largely prevailing ionic character of ligand-Ae bonding in all compounds. The ionic character of the Ae-ligand bond encourages bridging coordination, whereas the number of bridging ligands is controlled by steric factors. DFT computations also indicate that in [Ba(μ2-X1)(X2)]2 heteroleptic dimers, ligand predilection for bridging vs. terminal positions is dictated by the ability to establish secondary interactions between the metals and the ligands.  相似文献   
999.
The intercalation of cations into layered-structure electrode materials has long been studied in depth for energy storage applications. In particular, Li+-, Na+-, and K+-based cation transport in energy storage devices such as batteries and electrochemical capacitors is closely related to the capacitance behavior. We have exploited different sizes of cations from aqueous salt electrolytes intercalating into a layered Nb2CTx electrode in a supercapacitor for the first time. As a result, we have demonstrated that capacitive performance was dependent on cation intercalation behavior. The interlayer spacing expansion of the electrode material can be observed in Li2SO4, Na2SO4, and K2SO4 electrolytes with d-spacing. Additionally, our results showed that the Nb2CTx electrode exhibited higher electrochemical performance in the presence of Li2SO4 than in that of Na2SO4 and K2SO4. This is partly because the smaller-sized Li+ transports quickly and intercalates between the layers of Nb2CTx easily. Poor ion transport in the Na2SO4 electrolyte limited the electrode capacitance and presented the lowest electrochemical performance, although the cation radius follows Li+>Na+>K+. Our experimental studies provide direct evidence for the intercalation mechanism of Li+, Na+, and K+ on the 2D layered Nb2CTx electrode, which provides a new path for exploring the relationship between intercalated cations and other MXene electrodes.  相似文献   
1000.
Native mass spectrometry is now an important tool in structural biology. Thus, the nature of higher protein structure in the vacuum of the mass spectrometer is an area of significant interest. One of the major goals in the study of gas-phase protein structure is to elucidate the stabilising role of interactions at the level of individual amino acid residues. A strategy combining protein chemical modification together with collision induced unfolding (CIU) was developed and employed to probe the structure of compact protein ions produced by native electrospray ionisation. Tractable chemical modification was used to alter the properties of amino acid residues, and ion mobility-mass spectrometry (IM-MS) utilised to monitor the extent of unfolding as a function of modification. From these data the importance of specific intramolecular interactions for the stability of compact gas-phase protein structure can be inferred. Using this approach, and aided by molecular dynamics simulations, an important stabilising interaction between K6 and H68 in the protein ubiquitin was identified, as was a contact between the N-terminus and E22 in a ubiquitin binding protein UBA2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号