首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45698篇
  免费   15683篇
  国内免费   56篇
化学   55491篇
晶体学   48篇
力学   2042篇
数学   2679篇
物理学   1177篇
  2024年   373篇
  2023年   4084篇
  2022年   1441篇
  2021年   2474篇
  2020年   4618篇
  2019年   2306篇
  2018年   2275篇
  2017年   595篇
  2016年   5575篇
  2015年   5522篇
  2014年   4944篇
  2013年   5131篇
  2012年   3190篇
  2011年   1045篇
  2010年   3403篇
  2009年   3358篇
  2008年   1032篇
  2007年   758篇
  2006年   115篇
  2005年   86篇
  1997年   86篇
  1995年   142篇
  1994年   90篇
  1993年   217篇
  1992年   109篇
  1988年   124篇
  1987年   105篇
  1986年   83篇
  1985年   105篇
  1984年   114篇
  1983年   107篇
  1982年   135篇
  1981年   158篇
  1980年   196篇
  1979年   189篇
  1978年   194篇
  1977年   310篇
  1976年   363篇
  1975年   461篇
  1974年   474篇
  1973年   286篇
  1972年   370篇
  1971年   355篇
  1970年   541篇
  1969年   413篇
  1968年   456篇
  1967年   114篇
  1966年   89篇
  1965年   83篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
The meta junction is proposed to realize efficient thermally activated delayed fluorescence (TADF) in donor–acceptor (D-A) conjugated polymers. Based on triphenylamine as D and dicyanobenzene as A, as a proof of concept, a series of D-A conjugated polymers has been developed by changing their connection sites. When the junction between D and A is tuned from para to meta, the singlet–triplet energy splitting (ΔEST) is found to be significantly decreased from 0.44 to 0.10 eV because of the increasing hole–electron separation. Unlike the para-linked analogue with no TADF, consequently, the meta-linked polymer shows a strong delayed fluorescence. Its corresponding solution-processed organic light-emitting diodes (OLEDs) achieve a promising external quantum efficiency (EQE) of 15.4 % (51.9 cd A−1, 50.9 lm W−1) and CIE coordinates of (0.34, 0.57). The results highlight the bright future of D-A conjugated polymers used for TADF OLEDs.  相似文献   
982.
Microdroplet chemistry is attracting increasing attention for accelerated reactions at the solution–air interface. We report herein a voltage-controlled interfacial microreactor that enables acceleration of electrochemical reactions which are not observed in bulk or conventional electrochemical cells. The microreactor is formed at the interface of the Taylor cone in an electrospray emitter with a large orifice, thus allowing continuous contact of the electrode and the reactants at/near the interface. As a proof-of-concept, electrooxidative C−H/N−H coupling and electrooxidation of benzyl alcohol were shown to be accelerated by more than an order of magnitude as compared to the corresponding bulk reactions. The new electrochemical microreactor has unique features that allow i) voltage-controlled acceleration of electrochemical reactions by voltage-dependent formation of the interfacial microreactor; ii) “reversible” electrochemical derivatization; and iii) in situ mechanistic study and capture of key radical intermediates when coupled with mass spectrometry.  相似文献   
983.
Li-O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by-products. Here, a trifunctional ether-based redox mediator, 2,5-di-tert-butyl-1,4-dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2 and alleviate the rigorous oxidative environment of Li-O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2, it not only reduces the formation of by-products (a high Li2O2 yield of 96.6 %), but also promotes the solution growth of large-sized Li2O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2O2 and the decomposition of main by-products (Li2CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li-O2 batteries (243 cycles at 1000 mAh g−1 and 1000 mA g−1).  相似文献   
984.
An endohedrally functionalized self-assembled Fe4L6 cage complex can catalyze oxa-Pictet—Spengler cyclizations of tryptophols and various aldehyde derivatives, showing strong rate accelerations and size-selectivity. Selective molecular recognition of substrates controls the reactivity, and the cage is capable of binding and activating multiple different species along the multistep reaction pathway. The combination of a functionalized active site, size-selective reactivity, and multistep activation, all from a single host molecule, illustrates the biomimetic nature of the catalysis.  相似文献   
985.
Photoresponsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable the control of phenomena at the atomic level by light. Metal–organic frameworks (MOFs) provide a versatile platform to immobilize these photoresponsive units within defined molecular environments to optimize the intended functionality. For the application of these photoresponsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host–guest interaction. Therefore, we present a detailed insight into the impact of molecular switching on the intermolecular interactions. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host–guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.  相似文献   
986.
Atropisomerism has been observed in a variety of biaryl compounds and meso-aryl substituted porphyrins. However, in porphyrins, this phenomenon had been shown only with o-substituted 6-membered aromatic groups at the meso-position. We show herein that a 5-membered heteroaromatic (N-mesyl-pyrrol-2-yl) group at the meso-position leads to atropisomerism. In addition, we report a ‘one-pot’ synthetic route for the synthesis of ‘all-pyrrolic’ porphyrin (APP) with several N-protection groups (Boc, Cbz, Ms and Ts). Among these groups, we found that only the Ms group gave four individually separable atropisomers of meso-tetra(N-Ms-pyrrol-2-yl) porphyrin. Furthermore, the reductive removal of Cbz- was achieved to obtain meso-tetra(pyrrol-2-yl) porphyrin. Thus, our synthetic procedure provides an easy access to a group of APPs and stable atropisomers, which is expected to expand the application of novel APP-based materials.  相似文献   
987.
Although the chemistry of elusive tricyanomethane (cyanoform) has been studied during a period of more than 150 years, this compound has very rarely been utilized in the synthesis or modification of heterocycles. Three-membered heterocycles, such as epoxides, thiirane, aziridines, or 2H-azirines, are now treated with tricyanomethane, which is generated in situ by heating azidomethylidene-malonodinitrile in tetrahydrofuran at 45 °C or by adding sulfuric acid to potassium tricyanomethanide. This leads to ring expansion with formation of 2-(dicyanomethylidene)oxazolidine derivatives or creation of the corresponding thiazolidine, imidazolidine, or imidazoline compounds and opens up a new access to these push–pull-substituted olefinic products. The regio- and stereochemistry of the ring-enlargement processes are discussed, and the proposed reaction mechanisms were confirmed by using 15N-labeled substrates. It turns out that different mechanisms are operating; however, tricyanomethanide is always acting as a nitrogen-centered nucleophile, which is quite unusual if compared to other reactions of this species.  相似文献   
988.
A cross-reactive optical sensor array based on poly(p-phenyleneethynylene)s (PPEs) determines Edman degraded amino acids. We report a sensor array composed of three anionic PPEs P1–P3 , and their electrostatic complexes with metal ions (Fe2+, Cu2+, Co2+). We recorded distinct fluorescence intensity response patterns as “fingerprints” of this chemical tongue toward standard phenylthiohydantoin (PTH) amino acids—degradation products of the Edman process. These “fingerprints” were converted into canonical scores by linear discrimination analysis (LDA), which differentiates all of the PTH-amino acids. This array discriminates PTH-amino acid residues degraded from an oligopeptide through Edman sequencing. This approach is complementary to chromatography approaches which rely on mass spectrometry; our array offers the advantage of simplicity.  相似文献   
989.
The light-gated organocatalysis via the release of 4-N,N-dimethylaminopyridine (DMAP) by irradiation of the [Ru(bpy)2(DMAP)2]2+ complex with visible light was investigated. As model reaction the acetylation of benzyl alcohols with acetic anhydride was chosen. The pre-catalyst releases one DMAP molecule on irradiation at wavelengths longer than 455 nm. The photochemical process was characterized by steady-state irradiation and ultrafast transient absorption spectroscopy. The latter enabled the observation of the 3MLCT state and the spectral features of the penta-coordinated intermediate [Ru(bpy)2(DMAP)]2+. The released DMAP catalyzes the acetylation of a wide range of benzyl alcohols with chemical yields of up to 99 %. Control experiments revealed unequivocally that it is the released DMAP which takes the role of the catalyst.  相似文献   
990.
The efficient production of many medicinally or synthetically important starting materials suffers from wasteful or toxic precursors for the synthesis. In particular, the aromatic non-protected primary amine function represents a versatile synthetic precursor, but its synthesis typically requires toxic oxidizing agents and transition metal catalysts. The twofold electrochemical amination of activated benzene derivatives via Zincke intermediates provides an alternative sustainable strategy for the formation of new C−N bonds of high synthetic value. As a proof of concept, we use our approach to generate a benzoxazinone scaffold that gained attention as a starting structure against castrate-resistant prostate cancer. Further improvement of the structure led to significantly increased cancer cell line toxicity. Thus, exploiting environmentally benign electrooxidation, we present a new versatile and powerful method based on direct C−H activation that is applicable for example the production of medicinally relevant compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号