首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45832篇
  免费   15688篇
  国内免费   58篇
化学   55661篇
晶体学   50篇
力学   2034篇
数学   2702篇
物理学   1131篇
  2024年   373篇
  2023年   4086篇
  2022年   1443篇
  2021年   2488篇
  2020年   4626篇
  2019年   2313篇
  2018年   2282篇
  2017年   601篇
  2016年   5581篇
  2015年   5538篇
  2014年   4950篇
  2013年   5150篇
  2012年   3213篇
  2011年   1066篇
  2010年   3417篇
  2009年   3368篇
  2008年   1044篇
  2007年   772篇
  2006年   132篇
  2005年   99篇
  1997年   82篇
  1996年   82篇
  1995年   143篇
  1994年   85篇
  1993年   211篇
  1992年   99篇
  1988年   115篇
  1987年   100篇
  1985年   100篇
  1984年   107篇
  1983年   103篇
  1982年   130篇
  1981年   155篇
  1980年   194篇
  1979年   185篇
  1978年   191篇
  1977年   309篇
  1976年   363篇
  1975年   456篇
  1974年   471篇
  1973年   285篇
  1972年   370篇
  1971年   355篇
  1970年   541篇
  1969年   413篇
  1968年   456篇
  1967年   114篇
  1966年   89篇
  1965年   83篇
  1963年   112篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Polyoxometalates (POMs) are promising catalysts for the electrochemical hydrogen production from water owing to their high intrinsic catalytic activity and chemical tunability. However, poor electrical conductivity and easy detachment of the POMs from the electrode cause significant challenges under operating condition. Herein, a simple one-step hydrothermal method is reported to synthesize a series of Dexter–Silverton POM/Ni foam composites (denoted as Ni M -POM/Ni; M =Co, Zn, Mn), in which the stable linkage between the POM catalysts and the Ni foam electrodes lead to high activity for the hydrogen evolution reaction (HER). Among them, the highest HER performance can be observed in the NiCo-POM/Ni, featuring an overpotential of 64 mV (at 10 mA cm−2, vs. reversible hydrogen electrode), and a Tafel slope of 75 mV dec−1 in 1.0 m aqueous KOH. Moreover, the NiCo-POM/Ni catalyst showed a high faradaic efficiency ≈97 % for HER. Post-catalytic of NiCo-POM/Ni analyses showed virtually no mechanical or chemical degradation. The findings propose a facile and inexpensive method to design stable and effective POM-based catalysts for HER in alkaline water electrolysis.  相似文献   
992.
Photorelease of caged compounds is among the most powerful experimental approaches for studying cellular functions on fast timescales. However, its full potential has yet to be exploited, as the number of caged small molecules available for cell biological studies has been limited by synthetic challenges. Addressing this problem, a straightforward, one-step procedure for efficiently synthesizing caged compounds was developed. An in situ generated benzylic coumarin triflate reagent was used to specifically functionalize carboxylate and phosphate moieties in the presence of free hydroxy groups, generating various caged lipid metabolites, including a number of GPCR ligands. By combining the photo-caged ligands with the respective receptors, an easily implementable experimental platform for the optical control and analysis of GPCR-mediated signal transduction in living cells was developed. Ultimately, the described synthetic strategy allows rapid generation of photo-caged small molecules and thus greatly facilitates the analysis of their biological roles in live cell microscopy assays.  相似文献   
993.
Electric-discharge nitrogen comprises three main types of excited nitrogen species-atomic nitrogen (Natom), excited nitrogen molecules (N2*), and nitrogen ions (N2+) – which have different lifetimes and reactivities. In particular, the interfacial reaction locus between the discharged nitrogen and the water phase produces nitrogen compounds such as ammonia and nitrate ions (denoted as N-compounds generically); this is referred to as the plasma/liquid interfacial (P/L) reaction. The Natom amount was analyzed quantitatively to clarify the contribution of Natom to the P/L reaction. We focused on the quantitative relationship between Natom and the produced N-compounds, and found that both N2* and N2+, which are active species other than Natom, contributed to P/L reaction. The production of N-compounds from N2* and N2+ was enhanced upon UV irradiation of the water phase, but the production of N-compounds from Natom did not increase by UV irradiation. These results revealed that the P/L reactions starting from Natom and those starting from N2* and N2+ follow different mechanisms.  相似文献   
994.
995.
996.
Surface modification studies of non-vulcanized BR elastomers (butadiene rubber) by low-pressure air plasma treatment and the effect on ageing and adhesion performances are presented in this paper. In particular, the influence of discharge power and distance from the glow discharge, and impact of antioxidant molecules in the BR formulation were examined. To characterize the changes to the BR surface, XPS spectroscopy, contact angle measurements, AFM nanoindentation experiments and tack measurements were utilized. Oxidation and crosslinking were the main mechanisms observed on the polymer chains regardless of the plasma conditions used. Beyond a certain threshold of plasma energy (in our case, discharge power of ~60 W and exposure time of ~30 s), a steady state was reached irrespective of the distance from the glow discharge. The presence of antioxidant molecules considerably reduced crosslinking phenomena while maintaining oxidation processes on polymer chains and increasing the nitrogen content in the near surface region. The mechanisms responsible for these differences have been identified. Interestingly, the COOH/C=O ratio changed according to the balance between oxidation and crosslinking. The hydrophobic recovery rate was mainly driven by temperature-dependent dynamics and varied according to the degree of crosslinking in the surface region. It was found to be lower in air atmosphere in the presence of antioxidant molecules. Finally, the presence of antioxidant molecules in the BR formulation allowed the adhesion performances after plasma exposure to significantly increase.  相似文献   
997.
998.
Crystallization by particle attachment is widely observed in both natural and synthetic environments. Although this form of nonclassical crystallization is generally described by oriented attachment, random aggregation of building blocks to give single‐crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation‐based growth initially produces a nonoriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single‐crystal formation by grain‐boundary migration. This mechanism is corroborated by measurements of orientation rate versus external stress, which demonstrated a predictive relationship between the two. These findings advance our understandings about aggregation‐based growth via nanocrystal blocks and suggest an approach to material synthesis that takes advantage of stress‐induced coalignment.  相似文献   
999.
Most Eley–Rideal abstraction reactions involve an energetic gas‐phase atom reacting directly with a surface adsorbate to form a molecular product. Molecular projectiles are generally less reactive, may dissociate upon collision with the surface, and thus more difficult to prove that they can participate intact in abstraction reactions. Here we provide experimental evidence for direct reactions occurring between molecular N2+ and O2+ projectiles and surface‐adsorbed D atoms in two steps: first, the two atoms of the diatomic molecule undergo consecutive collisions with a metal surface atom without bond rupture; and second, the rebounding molecule abstracts a surface D atom to form N2D and O2D intermediates, respectively, detected as ions. The kinematics of the collisional interaction confirms product formation by an Eley–Rideal reaction mechanism and accounts for inelastic energy losses commensurate with surface re‐ionization. Such energetic hydrogenation of dinitrogen may provide facile activation of its triple bond as a first step towards bond cleavage.  相似文献   
1000.
Lanthanide‐catalyzed alkynyl exchange through C?C single‐bond cleavage assisted by a secondary amino group is reported. A lanthanide amido complex is proposed as a key intermediate, which undergoes unprecedented reversible β‐alkynyl elimination followed by alkynyl exchange and imine reinsertion. The in situ homo‐ and cross‐dimerization of the liberated alkyne can serve as an additional driving force to shift the metathesis equilibrium to completion. This reaction is formally complementary to conventional alkyne metathesis and allows the selective transformation of internal propargylamines into those bearing different substituents on the alkyne terminus in moderate to excellent yields under operationally simple reaction conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号