首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4973篇
  免费   265篇
  国内免费   32篇
化学   3403篇
晶体学   60篇
力学   178篇
数学   774篇
物理学   855篇
  2024年   14篇
  2023年   40篇
  2022年   145篇
  2021年   158篇
  2020年   111篇
  2019年   197篇
  2018年   155篇
  2017年   111篇
  2016年   245篇
  2015年   155篇
  2014年   248篇
  2013年   487篇
  2012年   283篇
  2011年   293篇
  2010年   209篇
  2009年   203篇
  2008年   218篇
  2007年   207篇
  2006年   204篇
  2005年   171篇
  2004年   158篇
  2003年   133篇
  2002年   177篇
  2001年   74篇
  2000年   109篇
  1999年   64篇
  1998年   41篇
  1997年   47篇
  1996年   35篇
  1995年   36篇
  1994年   35篇
  1993年   37篇
  1992年   33篇
  1991年   23篇
  1990年   17篇
  1989年   29篇
  1988年   28篇
  1987年   21篇
  1986年   18篇
  1985年   30篇
  1984年   27篇
  1983年   23篇
  1982年   21篇
  1981年   26篇
  1980年   16篇
  1979年   15篇
  1978年   15篇
  1977年   9篇
  1976年   13篇
  1975年   17篇
排序方式: 共有5270条查询结果,搜索用时 15 毫秒
11.
Chromatographia - A precursor carboxy-silica support was introduced for grafting a retentive polar ligand, namely D-glucamine, for use in hydrophilic interaction liquid chromatography. This support...  相似文献   
12.
13.
14.
15.
16.
This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.  相似文献   
17.
Psidium guajava (Guava tree) is one of the most widely known species in the family Myrtaceae. The Guava tree has been reported for its potential antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. In the current study, the chemical compositions of the n-hexane extract and the essential oil of P. guajava were investigated using the GC/MS analysis, along with an evaluation of their antioxidant potential, and an investigation into the enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BchE), tyrosinase, α-amylase, and α-glucosidase. Moreover, molecular docking of the major identified active sites of the target enzymes were investigated. The chemical characterization of the n-hexane extract and essential oil revealed that squalene (9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) are the major compounds in the n-hexane extract. In contrast, the major constituents of the essential oil are D-limonene (36.68%) and viridiflorol (9.68%). The n-hexane extract showed more antioxidant potential in the cupric reducing antioxidant capacity (CUPRAC), the ferric reducing power (FRAP), and the metal chelating ability (MCA) assays, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg EDTAE/g, respectively. In the phosphomolybdenum (PM) assay, the essential oil showed more antioxidant activity equivalent to 2.58 ± 0.14 mmol TE/g. The essential oil demonstrated a potent BChE and tyrosinase inhibitory ability at 6.85 ± 0.03 mg GALAE/g and 61.70 ± 3.21 mg KAE/g, respectively. The α-amylase, and α-glucosidase inhibitory activity of the n-hexane extract and the essential oil varied from 0.52 to 1.49 mmol ACAE/g. Additionally, the molecular docking study revealed that the major compounds achieved acceptable binding scores upon docking with the tested enzymes. Consequently, the P. guajava n-hexane extract and oil can be used as a promising candidate for the development of novel treatment strategies for oxidative stress, neurodegeneration, and diabetes mellitus diseases.  相似文献   
18.
The present work was designed to study the chemical composition and the antioxidant and antimicrobial properties of fruits (SFr) and leaf (SF) extracts from Solanum elaeagnifolium var. obtusifolium (Dunal) Dunal (S. elaeagnifolium). The chemical composition was determined using HPLC-DAD analysis. Colorimetric methods were used to determine polyphenols and flavonoids. Antioxidant capacity was assessed with DPPH, TAC, and FRAP assays. Antimicrobial activity was assessed using disk diffusion and microdilution assays against two Gram (+) bacteria (Staphylococcus aureus ATCC-6633 and Bacillus subtilis DSM-6333) and two Gram (-) bacteria (Escherichia coli K-12 and Proteus mirabilis ATCC-29906), while the antifungal effect was tested vs. Candida albicans ATCC-1023. By use of in silico studies, the antioxidant and antimicrobial properties of the studied extracts were also investigated. HPLC analysis showed that both fruits and leaf extracts from S. elaeagnifolium were rich in luteolin, quercetin, gallic acid, and naringenin. Both SFr and SF generated good antioxidant activity, with IC50 values of 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. The EC50 of SFr and SF was 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. SFr and SF also showed a good total antioxidant capacity of 939.66 ± 5.01 μg AAE/and 890.1 ± 7.76 μg AAE/g, respectively. SFr had important antibacterial activity vs. all tested strains—most notably B. subtilis DSM-6333 and E. coli, with MICs values of 2.5 ± 0.00 mg/mL and 2.50 ± 0.00 mg/mL, respectively. SFr demonstrated potent antifungal activity against C. albicans, with an inhibition diameter of 9.00 ± 0.50 mm and an MIC of 0.31 ± 0.00 mg/mL. The in silico approach showed that all compounds detected in SFr and SF had high activity (between −5.368 and 8.416 kcal/mol) against the receptors studied, including NADPH oxidase, human acetylcholinesterase, and beta-ketoacyl-[acyl carrier protein] synthase.  相似文献   
19.
Carnosic acid (CA) is a natural phenolic compound with several biomedical actions. This work was performed to study the use of CA-loaded polymeric nanoparticles to improve the antitumor activity of breast cancer cells (MCF-7) and colon cancer cells (Caco-2). CA was encapsulated in bovine serum albumin (BSA), chitosan (CH), and cellulose (CL) nanoparticles. The CA-loaded BSA nanoparticles (CA-BSA-NPs) revealed the most promising formula as it showed good loading capacity and the best release rate profile as the drug reached 80% after 10 h. The physicochemical characterization of the CA-BSA-NPs and empty carrier (BSA-NPs) was performed by the particle size distribution analysis, transmission electron microscopy (TEM), and zeta potential. The antitumor activity of the CA-BSA-NPs was evaluated by measuring cell viability, apoptosis rate, and gene expression of GCLC, COX-2, and BCL-2 in MCF-7 and Caco-2. The cytotoxicity assay (MTT) showed elevated antitumor activity of CA-BSA-NPs against MCF-7 and Caco-2 compared to free CA and BSA-NPs. Moreover, apoptosis test data showed an arrest of the Caco-2 cells at G2/M (10.84%) and the MCF-7 cells at G2/M (4.73%) in the CA-BSA-NPs treatment. RT-PCR-based gene expression analysis showed an upregulation of the GCLC gene and downregulation of the BCL-2 and COX-2 genes in cells treated with CA-BSA-NPs compared to untreated cells. In conclusion, CA-BSA-NPs has been introduced as a promising formula for treating breast and colorectal cancer.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号