首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   1篇
化学   44篇
力学   5篇
数学   25篇
物理学   22篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2002年   2篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1996年   4篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有96条查询结果,搜索用时 171 毫秒
21.
KMnCl3 and TlMnCl3 are known to crystallize in tetragonal and cubic perovskite structures, respectively. Room temperature X-ray diffraction data obtained in our laboratory proved that the perovskite structure of KmnCl3 is orthorhombic. The space group is Pnma and Z = 4. Unit cell parameters are a = 7.08(1), b = 9.97(1), and c = 6.98(1) Å. Experimental data showed that the perovskite structures of KMnCl3 and TlMnCl3 are not stable, and that both materials transform slowly into another orthorhombic, nonperovskite KCdCl3 structure with space group Pnma and Z = 4. Cell parameters of these structures are a = 8.769(7), b = 3.883(9), and c = 14.42(1) Å for KMnCl3 and a = 8.926(8), b = 3.839(9), and c = 14.77(1) Å for TlMnCl3. The nonperovskite structures of KMnCl3 and TlMnCl3 transform on heating to the perovskite structures and these phase transitions are not immediately reversed. No correlation could be found between the KCdCl3 structure and water incorporation in the crystal lattice as has been previously suggested. An analysis of the factors that cause the K structure to be exhibited in chloride and to be absent in the fluoride compounds is also presented.  相似文献   
22.
Theorem. GivenK>1 and 1≦p<∞, there is λ>1 so that everyL p,λ subspace ofl p isK-isomorphic tol p.  相似文献   
23.
We contribute to research on visualization as an epistemic learning tool by inquiring into the didactical potential of having students visualize one phenomenon in accord with two different partial meanings of the same concept. 22 Grade 4–6 students participated in a design study that investigated the emergence of proportional-equivalence notions from mediated perceptuomotor schemas. Working as individuals or pairs in tutorial clinical interviews, students solved non-symbolic interaction problems that utilized remote-sensing technology. Next, they used symbolic artifacts interpolated into the problem space as semiotic means to objectify in mathematical register a variety of both additive and multiplicative solution strategies. Finally, they reflected on tensions between these competing visualizations of the space. Micro-ethnographic analyses of episodes from three paradigmatic case studies suggest that students reconciled semiotic conflicts by generating heuristic logico-mathematical inferences that integrated competing meanings into cohesive conceptual networks. These inferences hinged on revisualizing additive elements multiplicatively. Implications are drawn for rethinking didactical design for proportions.  相似文献   
24.
Only a few studies in the literature have applied the finite-element method to analyse assemblies of meshed particles. These studies illustrated the relevance of this method for granular materials. Here, the compaction of ductile metal powders was studied through a numerical assembly of elastic–plastic and rate-independent spherical particles. The aim of this paper was to understand the evolution of yield surfaces with complex loading paths up to high relative density at the macroscopic scale and at the granular scale. Simulation results revealed that yield surfaces evolved with both isotropic and kinematic hardening mechanisms, depending on the compaction stage. An analysis of the sample microstructure was proposed, and a detailed study of contacts between particles revealed some of the mechanisms that led to the observed evolution of yield surfaces.  相似文献   
25.
Bohr's atomic theory is widely viewed as remarkable, both for its accuracy in predicting the observed optical transitions of one-electron atoms and for its failure to fully correspond with current electronic structure theory. What is not generally appreciated is that Bohr's original semiclassical conception differed significantly from the Bohr-Sommerfeld theory and offers an alternative semiclassical approximation scheme with remarkable attributes. More specifically, Bohr's original method did not impose action quantization constraints but rather obtained these as predictions by simply matching photon and classical orbital frequencies. In other words, the hydrogen atom was treated entirely classically and orbital quantized emerged directly from the Planck-Einstein photon quantization condition, E = h nu. Here, we revisit this early history of quantum theory and demonstrate the application of Bohr's original strategy to the three quintessential quantum systems: an electron in a box, an electron in a ring, and a dipolar harmonic oscillator. The usual energy-level spectra, and optical selection rules, emerge by solving an algebraic (quadratic) equation, rather than a Bohr-Sommerfeld integral (or Schroedinger) equation. However, the new predictions include a frozen (zero-kinetic-energy) state which in some (but not all) cases lies below the usual zero-point energy. In addition to raising provocative questions concerning the origin of quantum-chemical phenomena, the results may prove to be of pedagogical value in introducing students to quantum mechanics.  相似文献   
26.
Normal (non-enhanced) Raman spectroscopy is used to determine the site of phosphorylation on a 13-residue peptide whose sequence derives from the cellular protein pp60(c-src) (protein tyrosine kinase). Raman spectra of serine, threonine and tyrosine amino acids and their phosphorylated derivatives are used to aid in the interpretation of peptide spectra. The purity of the synthetic peptides are confirmed by mass spectroscopy. Peptide Raman measurements are performed using the recently reported drop-coating deposition Raman (DCDR) method, followed by Savistky-Golay second derivative (SGSD) pre-processing and multivariate spectral classification using partial least squares (PLS) discriminant analysis. Leave-one-out training/testing results are displayed using a PLS psuedo-probability score plot and shown to facilitate error-free spectral determination of the site of phosphorylation.  相似文献   
27.
In a finite-dimensional Banach space with a monotone basis, the range of a norm-1 projection has a monotone basis.  相似文献   
28.
lp/3 does not embed isometrically inL 1, forp>2. The question whenl r n embeds isometrically inL pis completely answered.  相似文献   
29.
Interfacial fluctuations in the cohesive (van der Waals) interaction energy of spherical oil-drops with water provide evidence of a length scale dependent transition from linear to non-linear response behavior. For sub-nanometer oil-drop sizes, energy fluctuations are found to be independent of the van der Waals coupling strength, while nanometer (and larger) size oil drops experience highly non-linear energy fluctuations. The latter behavior is linked to enhanced hydrophobic density fluctuations and the emergence of entropic contributions to oil-water cohesive interaction free energies.  相似文献   
30.
The electron diffusion coefficient at varying porosity has been determined in a series of nanostructured TiO(2) films of different initial thicknesses. The porosity was changed by applying different pressures prior to sintering, thereby modifying the internal morphology of the films though not their chemical and surface conditions. A systematic increase of the effective diffusion coefficient was observed as the porosity was decreased, indicating the improvement of the internal connectivity of the network of nanoparticles. The experimental results have been rationalized using percolation theory. First of all, applying a power law dependence, the diffusion coefficient as a function of porosity from different films collapsed in a single master curve. In addition, application of the models of effective medium approximation (EMA) allows us to compare the experimental results with previous data from Monte Carlo simulation. The different data show a similar dependence in agreement with the EMA predictions, indicating that the geometrical effect of electron transport due to variation of porous morphology in TiO(2) nanoparticulate networks is well described by the percolation concept.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号