首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   1篇
  国内免费   7篇
化学   49篇
力学   9篇
数学   26篇
物理学   21篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   8篇
  2006年   10篇
  2005年   2篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  2001年   4篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有105条查询结果,搜索用时 0 毫秒
101.
Two imaging modalities based on molecular and elemental spectroscopy were used to characterize a painting by Cosimo Tura. Visible‐to‐near‐infrared (400–1680 nm) reflectance imaging spectroscopy (RIS) and X‐ray fluorescence (XRF) imaging spectroscopy were employed to identify pigments and determine their spatial distribution with higher confidence than from either technique alone. For example, Mary’s red robe was modeled through the distribution of an insect‐derived red lake (RIS map) and lead white (XRF lead map), rather than a layer of red lake on vermilion. The RIS image cube was also used to isolate the preparatory design by mapping the reflectance spectra associated with it. In conjunction with results from an earlier RIS study (1650–2500 nm) to map and identify the binding media, a more thorough understanding was gained of the materials and techniques used in the painting.  相似文献   
102.
Copper and topaquinone (TPQ) containing amine oxidases utilize O2 for the metabolism of biogenic amines while concomitantly generating H2O2 for use by the cell. The mechanism of O2 reduction has been the subject of long-standing debate due to the obscuring influence of a proton-coupled electron transfer between the tyrosine-derived TPQ and copper, a rapidly established equilibrium precluding assignment of the enzyme in its reactive form. Here, we show that substrate-reduced pea seedling amine oxidase (PSAO) exists predominantly in the Cu(I), TPQ semiquinone state. A new mechanistic proposal for O2 reduction is advanced on the basis of thermodynamic considerations together with kinetic studies (at varying pH, temperature, and viscosity), the identification of steady-state intermediates, and the analysis of competitive oxygen kinetic isotope effects, (18)O KIEs, [kcat/KM((16,16)O2)]/[kcat/KM((16,18)O2)]. The (18)O KIE = 1.0136 +/- 0.0013 at pH 7.2 is independent of temperature from 5 degrees C to 47 degrees C and insignificantly changed to 1.0122 +/- 0.0020 upon raising the pH to 9, thus indicating the absence of kinetic complexity. Using density functional methods, the effect is found to be precisely in the range expected for reversible O2 binding to Cu(I) to afford a superoxide, [Cu(II)(eta(1)-O2)(-I)](+), intermediate. Electron transfer from the TPQ semiquinone follows in the first irreversible step to form a peroxide, Cu(II)(eta(1)-O2)(-II), intermediate driving the reduction of O2. The similar (18)O KIEs reported for copper amine oxidases from other sources raise the possibility that all enzymes react by related inner-sphere mechanisms although additional experiments are needed to test this proposal.  相似文献   
103.
104.
A systematic in silico approach is employed to generate an accurate model for the catalytically important oxidized state of galactose oxidase (GO) using spectroscopically calibrated hybrid density-functional theory. GO displays three distinct oxidation states: oxidized [Cu(II)-Y*], semireduced [Cu(II)-Y], and fully reduced [Cu(I)-Y], but only the [Cu(II)-Y*] and the [Cu(I)-Y] states are assumed to be involved in catalysis. We have developed multiple models for the oxidized [Cu(II)-Y*] state, whose structure has not yet been fully characterized. These models were evaluated by comparison of calculated and experimental structural data, singlet-triplet energy gaps, and electronic transitions for the antiferromagnetically coupled oxidized [Cu(II)-Y*] state. An extended model system that includes explicit solvent molecules and second coordination sphere residues (R330, Y405, and W290) is essential to obtain the correct electronic structure of the active site. The model with all the residues that have been shown to affect the radical stability and catalysis resulted in a singlet ground state with the radical centered on the Y272-C228 cofactor. The optimized structure of the oxidized GO [Cu(II)-Y*] reveals a five-coordinated square pyramidal coordination geometry very similar to [Cu(II)-Y] with considerably different Cu-ligand distances. The hydrogen-bonding interactions involving Y495 modulates the spin density distribution and the singlet-triplet energy gaps. The final model as the most reasonable structure of the oxidized [Cu(II)-Y*] state in GO reproduces the spectroscopic signature of oxidized GO.  相似文献   
105.
We have studied the photodissociation dynamics of expansion-cooled BrO radical both above (278-281.5 nm) and below (355 nm) the A (2)Pi(3/2) state threshold using velocity map ion imaging. A recently developed late-mixing flash pyrolytic reactor source was utilized to generate an intense BrO radical molecular beam. The relative electronic product branching ratios at 355 nm and from 278 to 281.5 nm were determined. We have investigated the excited state dynamics based on both the product branching and the photofragment angular distributions. We find that above the O((1)D(2)) threshold the contribution of the direct excitation to states other than the A (2)Pi(3/2) state and the role of curve crossing is considerably larger in BrO compared to that observed for ClO, in agreement with recent theoretical studies. The measurement of low velocity photofragments resulting from photodissociation just above the O((1)D(2)) threshold provides an accurate and direct determination of the A (2)Pi(3/2) state dissociation threshold of 35418+/-35 cm(-1), leading to a ground state bond energy of D(0)(0)(BrO)=55.9+/-0.1 kcal/mol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号