首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20657篇
  免费   3411篇
  国内免费   2291篇
化学   14700篇
晶体学   260篇
力学   1251篇
综合类   186篇
数学   2057篇
物理学   7905篇
  2024年   75篇
  2023年   467篇
  2022年   669篇
  2021年   752篇
  2020年   817篇
  2019年   788篇
  2018年   661篇
  2017年   623篇
  2016年   973篇
  2015年   977篇
  2014年   1105篇
  2013年   1443篇
  2012年   1860篇
  2011年   1889篇
  2010年   1248篇
  2009年   1106篇
  2008年   1293篇
  2007年   1280篇
  2006年   1129篇
  2005年   1006篇
  2004年   720篇
  2003年   628篇
  2002年   568篇
  2001年   430篇
  2000年   410篇
  1999年   470篇
  1998年   356篇
  1997年   369篇
  1996年   309篇
  1995年   296篇
  1994年   302篇
  1993年   247篇
  1992年   196篇
  1991年   198篇
  1990年   177篇
  1989年   112篇
  1988年   86篇
  1987年   89篇
  1986年   60篇
  1985年   44篇
  1984年   43篇
  1983年   24篇
  1982年   25篇
  1981年   18篇
  1980年   14篇
  1975年   2篇
  1957年   4篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
To optimize the cycle life and rate performance of lithium-ion batteries (LIBs), ultra-fine Fe2O3 nanowires with a diameter of approximately 2 nm uniformly anchored on a cross-linked graphene ribbon network are fabricated. The unique three-dimensional structure can effectively improve the electrical conductivity and facilitate ion diffusion, especially cross-plane diffusion. Moreover, Fe2O3 nanowires on graphene ribbons (Fe2O3/GR) are easily accessible for lithium ions compared with the traditional graphene sheets (Fe2O3/GS). In addition, the well-developed elastic network can not only undergo the drastic volume expansion during repetitive cycling, but also protect the bulk electrode from further pulverization. As a result, the Fe2O3/GR hybrid exhibits high rate and long cycle life Li storage performance (632 mAh g−1 at 5 A g−1, and 471 mAh g−1 capacity maintained even after 3000 cycles). Especially at high mass loading (≈4 mg cm−2), the Fe2O3/GR can still deliver higher reversible capacity (223 mAh g−1 even at 2 A g−1) compared with the Fe2O3/GS (37 mAh g−1) for LIBs.  相似文献   
992.
Cobalt hexacyanoferrate of various compositions was prepared in flow mode and the role of the vacancy on the structure, thermogravimetric (TG) properties, and the adsorption efficiency was studied. The material, NayCo[Fe(CN)6]1−xz H2O, with a minimum vacancy of x=0.014 to the highest x=0.47, was obtained. The TG-differential scanning calorimetry (DSC) profile showed a distinct influence of the vacancy on the water release temperature. Materials with x>0.35 showed a smooth release of water at a relatively lower temperature. However, for the materials with x<0.35, water release took place in multiple steps, suggesting the existence of various forms of water. The FTIR profiles supported the existence of free and bonded water molecules. However, the materials with multiple water peaks in the FTIR spectra showed a shift of the major XRD peaks when heated at 285 °C in N2 atmosphere. Regarding the effect of the vacancy on the adsorption behavior, for NH4, the adsorption was found to be proportional to the number of Na atoms in the material, confirming the ion-exchange process. On the contrary, the materials with low vacancy and high Na content showed nominal Cs adsorption capacity. Interestingly, the K adsorption capacity was found to be in between that of the other two ions. This means the ionic size decides the rate of placement into the interstitial sites. For larger ions like Cs, the ease of percolation via the vacancy decides the overall adsorption efficiency.  相似文献   
993.
The conversion of the alkali-treated intergrowth germanosilicate CIT-13 into the single-crystalline high-silica ECNU-21 (named after East China Normal University) zeolite, with a novel topology and a highly crystalline zeolite framework, has been realized through a creative top-down strategy involving a mild alkaline-induced multistep process consisting of structural degradation and reconstruction. Instead of acid treatment, hydrolysis in aqueous ammonia solution not only readily cleaved the chemically weak Ge(Si)−O−Ge bonds located within the interlayer double four ring (D4R) units of CIT-13, but also cleaved the metastable Si−O−Si bonds therein. This led to extensive removal of the D4R units, and also generated silanol groups on adjacent silica-rich layers, which then condensed to form a novel daughter structure upon calcination. Individual oxygen bridges in the reassembled ECNU-21 replaced the germanium-rich D4R units in CIT-13, thereby eliminating the original intergrowth phenomenon along the b axis. With an ordered crystalline structure of 10-ring (R) channels as well as suitable germanium-related Lewis acid sites, ECNU-21 serves as a stable solid Lewis acid catalyst for the shape-selective hydration of ethylene oxide (EO) to ethylene glycol (EG) at greatly reduced H2O/EO ratios and reaction temperature in comparison with the noncatalytic industrial process.  相似文献   
994.
The Mills reaction and cyclization of readily available 2-aminobenzyl alcohols and nitrosobenzenes using thionyl bromide provided 2H-indazoles in up to 88 % yields. In the metal-free process, acetic acid played a crucial role for the both Mills reaction and cyclization. A brominated 2H-indazole could also be obtained through the one-pot sequence.  相似文献   
995.
The properties of polymeric materials are dictated not only by their composition but also by their molecular architecture. Here, by employing brush‐first ring‐opening metathesis polymerization (ROMP), norbornene‐terminated poly(ethylene oxide) (PEO) macromonomers ( MM‐n , linear architecture), bottlebrush polymers ( Brush‐n , comb architecture), and brush‐arm star polymers ( BASP‐n , star architecture), where n indicates the average degree of polymerization (DP) of PEO, are synthesized. The impact of architecture on the thermal properties and Li+ conductivities for this series of PEO architectures is investigated. Notably, in polymers bearing PEO with the highest degree of polymerization, irrespective of differences in architecture and molecular weight (~100‐fold differences), electrolytes with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as an Li+ source exhibit normalized ionic conductivities (σn) within only 4.9 times difference (σn = 29.8 × 10?5 S cm?1 for MM‐45 and σn = 6.07 × 10?5 S cm?1 for BASP‐45 ) at a concentration of Li+ r = [Li+]/[EO] = 1/12 at 50 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 448–455  相似文献   
996.
Herein, we report the total synthesis of traumatic lactone and rhizobialide by utilizing allenoic acid to construct the lactone ring. The key starting materials, allenoic acids, could be prepared by the ATA (allenation of terminal alkynes) of a terminal alkyne with an aldehyde that contained a protected hydroxyl group followed by hydrolysis. Importantly, the asymmetric synthesis could be realized just by replacing racemic diphenylprinol with (R)- or (S)-diphenylprinol to deliver the optically active allenoate.  相似文献   
997.
o-Alkenylation of unprotected phenols has been developed by direct C−H functionalization catalyzed by PdII. This work features phenol group as a directing group and realizes highly site-selective C−H bond functionalization of phenols to achieve the corresponding products in moderate to excellent yields at 60 °C. The advantages of this reaction include unprecedented C−H functionalization using phenol as a directing group, high regioselectivity, good substrate scope, mild reaction conditions, and high efficiency. To the best of our knowledge, this is the first example of a regioselective C−H alkenylation of unprotected phenols utilizing phenolic hydroxyl group as a directing group. The alkenylation of unprotected tyrosine and intramolecular cyclization are also successfully carried out under this catalytic system in good yields. Furthermore, this novel method enables a late-stage modification of complex phenol-containing bioactive molecules toward a diversity-oriented drug discovery.  相似文献   
998.
The tandem dual C−H amination of tetrahydroquinoxalines with free amines under aerobic copper catalysis conditions has been demonstrated. The synthetic protocol proceeds with good substrate and functional group compatibility, mild reaction conditions, short reaction time, the use of the naturally abundant [Cu]/O2 catalyst system, excellent chemoselectivity and synthetic efficiency, and with no need for the pre-installation of specific aminating agents, which offers a practical platform for the rapid and diverse synthesis of diaminoquinoxalines. Moreover, this work has shown the potential of single-electron-oxidation-induced C−H functionalization of N-heterocycles, and its application in the development of optoelectronic materials.  相似文献   
999.
Charge transport across the peptide chains is one of the vital processes in the biological systems, so understanding their charge transport properties is an indispensable prerequisite to explain the complex biochemical phenomenon. Here, we review the charge transport mechanism, the influence of the special groups and the experimental conditions on the charge transport through the peptide backbone by employing the single‐molecule electrical measurements. Besides, we further review the recent progresses in charge transport properties of supramolecular interaction among the adjacent peptide chains. Finally, we discuss some experimental and theoretical contradictions existing in the charge transport through peptides and provide new inspiration for the future development of the bioelectronics at the single‐molecule scale.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号