首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8923篇
  免费   1745篇
  国内免费   997篇
化学   6084篇
晶体学   86篇
力学   726篇
综合类   65篇
数学   1142篇
物理学   3562篇
  2024年   19篇
  2023年   182篇
  2022年   258篇
  2021年   310篇
  2020年   343篇
  2019年   321篇
  2018年   291篇
  2017年   283篇
  2016年   430篇
  2015年   417篇
  2014年   465篇
  2013年   646篇
  2012年   773篇
  2011年   859篇
  2010年   574篇
  2009年   549篇
  2008年   641篇
  2007年   510篇
  2006年   551篇
  2005年   393篇
  2004年   328篇
  2003年   264篇
  2002年   246篇
  2001年   204篇
  2000年   198篇
  1999年   194篇
  1998年   185篇
  1997年   174篇
  1996年   169篇
  1995年   138篇
  1994年   124篇
  1993年   113篇
  1992年   92篇
  1991年   72篇
  1990年   76篇
  1989年   61篇
  1988年   47篇
  1987年   36篇
  1986年   34篇
  1985年   25篇
  1984年   19篇
  1983年   16篇
  1982年   15篇
  1981年   6篇
  1980年   7篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
111.
A cobalt hexacyanoferrate (CoHCF) nanoparticle (size ca. 60 nm) chemically modified electrode (CME) was fabricated and the electrochemical behavior of hemoglobin (Hb) at this nanosized CoHCF CME was studied. In comparison with a bare glassy carbon electrode (GCE) and a general CoHCF CME electrodeposited in a traditional manner, the present nanosized CoHCF CME performed efficiently electrocatalytic reduction for Hb with relatively high sensitivity, stability, and longlife, Combined with liquid chromatography (LC), the nanosized CoHCF CME was used as the electrochemical detector of Hb in the established flow injection analysis-electrochemical determination (FIA-ECD) system. The peak current was a linear function of concentrations in the range from 2.5×10^-8 to 5.0×10^-6mol/L for Hb, with detection limit of 1.4×10^-8 mol/L. The FIA-ECD system has been successfully applied to assess the Hb content of clinic blood samples with advantages of sensitiveness, speediness, easy control and small sample-consumption.  相似文献   
112.
We report the first separation of the enantiomers of hypericin. Their steady-state optical spectra and ultrafast primary photoprocesses are investigated in chiral environments. Within experimental error, there is no difference between the two enantiomers in any of the systems considered. This is consistent with the emerging picture that the rich and extended absorption spectrum of hypericin is not a result of ground-state heterogeneity. It is also consistent with the observation that the spectra and photophysics of hypericin are generally insensitive to environments in which it does not aggregate.  相似文献   
113.
The effects of Manganese(Mn)incorporation on a precipitated iron-based Fischer-Tropsch synthesis(FTS)catalyst were investigated using N_2 physical adsorption,air differential thermal analysis (DTA),H_2 temperature-programmed reduction(TPR),and M(?)ssbauer spectroscopy.The FTS perfor- mances of the catalysts were tested in a slurry phase reactor.The characterization results indicated that Mn increased the surface area of the catalyst,and improved the dispersion ofα-Fe_2O_3 and reduced its crystallite size as a result of the high dispersion effect of Mn and the Fe-Mn interaction.The Fe-Mn inter- action also suppressed the reduction ofα-Fe_2O_3 to Fe_3O_4,stabilized the FeO phase,and(or)decreased the carburization degree of the catalysts in the H_2 and syngas reduction processes.In addition,incorporated Mn decreased the initial catalyst activity,but improved the catalyst stability because Mn restrained the reoxidation of iron carbides to Fe_3O_4,and improved further carburization of the catalysts.Manganese suppressed the formation of CH_4 and increased the selectivity to light olefins(C_(2-4)~=),but it had little effect on the selectivities to heavy(C_(5 )) hydrocarbons.All these results indicated that the strong Fe-Mn interaction suppressed the chemisorptive effect of the Mn as an electronic promoter,to some extent,in the precipitated iron-manganese catalyst system.  相似文献   
114.
Retention indexes (RI's) on SE-30 and Carbowax 20M columns are characteristic and can be used for identification purposes. A method for predicting RI on the basis of the number of atoms and contributions from substituents and functional groups is discussed. This method establishes a structure retention index relationship (SRIR), capable of relating structure to RI and is useful for suggesting structure to match with radioactive peaks. Examples of labeled side products tentatively identified in this manner are given.  相似文献   
115.
In this preliminary study, a new approach to ion-exclusion chromatography is proposed to overcome the relatively poor conductivity detection response which occurs in ion-exclusion chromatography when acids are added to the eluent in order to improve peak shape. This approach, termed vacancy ion-exclusion chromatography, requires the sample to be used as eluent and a sample of water to be injected onto a weakly acidic cation-exchange column (TSKgel OApak-A). Vacancy peaks for each of the analytes appear at the retention times of these analytes. Highly sensitive conductivity detection is possible and sharp, well-shaped peaks are produced, leading to efficient separations. Retention times were found to be affected by the concentration of the analytes in the eluent, and also by the presence of an organic modifier such as methanol in the eluent. Detection limits for oxalic, formic, acetic, propionic, butyric and valeric acids were 0.1, 0.2, 0.3, 0.3, 0.4 and 0.5 microM, respectively, and linear ranges for some acids extended over two orders of magnitude. Precision values for retention times were 0.21% and for peak areas were <1.90%. The vacancy ion-exclusion chromatography method was found to give detection responses four to 10 times higher than conventional ion-exclusion chromatography using sulfuric acid eluent and two to five times higher than conventional ion-exclusion chromatography using benzoic acid eluent.  相似文献   
116.
稀土掺杂的(K, Sr)Cl·SiO2复合凝胶的荧光性能   总被引:1,自引:0,他引:1  
采用sol gel法制备了单掺铕及共掺铕、铈的(K,Sr)Cl·SiO2复合凝胶,研究了复合凝胶的荧光性能。根据荧光测试结果,复合凝胶中,Eu3+在没有还原剂的作用下,可以与基质作用形成还原态的Eu2+,复合凝胶表现出相应的Eu2+荧光性能;研究认为,Ce3+,Eu3+共掺杂时,复合凝胶激发光谱与发射光谱峰位基本不变,但强度有所不同。330nm处的激发光谱明显增强,且发射光谱随Ce3+的掺杂量增加而增强。当Ce3+掺杂浓度为3.0%(原子分数)时,复合凝胶具有最大的荧光发射强度,表明Ce3+具有很好的敏化作用。在Ce3+,Eu3+共掺杂复合凝胶体系中,复合凝胶荧光强度增大的原因既可能是电子转移过程,也可能是Ce3+→Eu2+的能量传递过程所致。  相似文献   
117.
Unfractionated heparin (UFH), a naturally occurring anionic polysaccharide, is widely used as an anticoagulant agent in clinical practice. When overdosed or used in sensitive patients, UFH may cause various risks and a UFH neutralizer needs to be administered immediately to reverse heparinization. However, the most common UFH neutralizer, protamine sulfate, often causes various adverse effects, some of which are life-threatening. Herein, we designed a highly biocompatible, oligoethylene glycol functionalized guanidinocalixarene (GC4AOEG) as an antidote against UFH. GC4AOEG and UFH exhibited a strong binding affinity, ensuring specific recognition and neutralization of UFH by GC4AOEG in vitro and in vivo. As a consequence, UFH-induced excessive bleeding was significantly alleviated by GC4AOEG in different mouse bleeding models. Additionally, no adverse effects were observed during these treatments in vivo. Taken together, GC4AOEG, as a strategically designed, biocompatible artificial receptor with strong recognition affinity towards UFH, may have significant clinical potential as an alternative UFH reversal agent.

An oligoethylene glycol functionalized guanidinocalix[4]arene was developed as a safe antidote against heparin, via specific recognition and neutralization of heparin in vitro and in vivo.

Heparin sodium, often referred to as unfractionated heparin (UFH, also known as heparin), is a well-known anionic glycosaminoglycan consisting of long, helical, unbranched chains of repeating sulfonated disaccharide units (Fig. 1).1 It is currently a gold-standard life-saving drug to overcome blood coagulation by activating antithrombin-III to impede the coagulation process.2,3 Systemic heparinization is the most common anticoagulation procedure in surgical practice (e.g. open-heart surgery) and extracorporeal therapies such as kidney dialysis. At the end of surgery, excess heparin often needs to be deactivated by using a heparin neutralizer; otherwise patients have risks of low blood pressure and a slow heart rate, and may develop internal bleeding.4 Therefore, the neutralization of heparin has been a topic of significant research interest in the biomedical field.Open in a separate windowFig. 1Scheme of heparin reversal by GC4AOEG in the circulatory system.Protamine sulfate, the only FDA-approved neutralizer of UFH, possesses a highly positive charge density due to its polymeric nature and rich arginine residues. Thus, electrostatic interactions are the major driving force in the formation of a UFH–protamine complex, leading to the neutralization and deactivation of UFH.1,5 However, due to its non-specific interactions, protamine sulfate often causes various adverse effects such as bradycardia, hypotension and pulmonary hypertension, as well as allergic reactions including life-threatening anaphylactic reactions in some patients.5 When overdosed, protamine may further impair the intricate balance in the blood and cause coagulopathy.5–7 Given these issues, there has been a medical need for alternative, safe UFH neutralizers that can specifically counteract UFH without causing serious adverse effects.8Discovering and developing new heparin neutralizers has been a popular area of research.8,9 During the past two decades, a variety of different UFH neutralizers including small molecules,10 cationic polymers (e.g. polybrene),11–14 peptides,11,15 and nanoparticles16,17 have been designed and evaluated in vitro and/or in vivo. For instance, surfen, as a small-molecule antagonist of UFH, may electrostatically bind with UFH; however only modest neutralizing effects against UFH were observed in rats,10,18 likely attributed to the lack of strong, specific recognition. On the other hand, polycationic species, including polybrene19 and poly-dl-lysine,20 exhibited stronger binding with UFH and significant potential as UFH neutralization agents. However, toxicity was still a key concern of these species due to their intrinsic electrostatic interactions with red blood cells (RBC).21 Meanwhile, some UFH antagonists have achieved preliminary success in preclinical studies and even moved to clinical evaluations. For instance, ciraparantag (PER977), as a synthetic antidote against several anticoagulants, is currently being evaluated in phase II clinical trials.22 UHRA (Universal Heparin Reversal Agent), a synthetic multivalent dendrimer polymer in the form of nanoparticles with positively charged surfaces, can reverse the activity of all clinically available heparins and it is currently undergoing preclinical studies and will likely move to clinical investigations.23 However, the oligo- and poly-cationic nature of these species suggests their general tendency towards any negatively charged species, making them “universal” or function against several anticoagulants, implying their low specificity towards heparin.More recently, the sequestration and reversal of toxic agents by supramolecular host molecules have attracted increasing attention, and a typical example of clinical and commercial success is sugammadex, a carboxylated derivative of gamma-cyclodextrin that may specifically reverse the activity of non-depolarizing neuromuscular blocking agents.24 Inspired by this clinical success, several macrocycles were designed and synthesized to selectively bind UFH. For instance, Liu et al. synthesized amphiphilic multi-charged cyclodextrins (AMCD), and AMCD-assembly was utilized for selective heparin binding.16 Nitz et al. derivatized a cyclodextrin with amide and guanidino groups as a polycationic receptor to recognize and detect UFH.25 Kostiainen and co-workers studied cationic, quaternary ammonium functionalized pillar[5]arene because of its potential complexation with UFH.26 Additionally, cationic calixarene derivatives were designed for UFH binding and guanidinocalixarenes exhibited stronger binding affinity with UFH than their quaternary amine-functionalized counterparts.27,28 In spite of decent binding affinities and selective recognition of UFH, these macrocycles still possess various limitations such as non-specific toxicity induced mostly by cationic charges, which may disrupt cell membranes and induce blood coagulation.29,30An ideal UFH neutralizer should full-fill the following three requirements: (1) binding strongly towards UFH in a specific manner; (2) excellent biocompatibility and safety profile, and (3) a clearly defined molecular structure to facilitate batch-to-batch consistency. Thus far, none of the clinical UFH antagonists or previously reported candidates has fulfilled these conditions. Herein we designed an artificial receptor, an oligoethylene glycol functionalized guanidinocalixarene, GC4AOEG, by leveraging the asymmetrical structure of calixarene to strategically add guanidinium groups on one side and oligoethylene glycol (OEG) groups on the other side (Fig. 1). We anticipated that the guanidinium-enriched upper rim would bind strongly with UFH via salt bridges (charge-assisted hydrogen bonds).28,31 In addition, the biocompatible OEG-functionalized lower rim may help improve the water-solubility and biocompatibility of the host molecule.32,33GC4AOEG was synthesized in 5 steps starting from the maternal calix[4]arene (Fig. 2). Briefly, p-tert-butylcalix[4]arene 1 was alkylated with tosylate 234 to obtain compound 3 with a well-defined cone conformation, and replacement of the tert-butyl with nitro groups via an ipso-nitration reaction afforded compound 4.35 Subsequently, compound 4 was hydrogenated in the presence of SnCl2·2H2O, affording the tetramine derivative 5. Subsequently, compound 6 was obtained via a reaction between compound 5 and di-Boc-protected thiourea units. The removal of the protecting groups was achieved using SnCl4 in ethyl acetate, to yield the target GC4AOEG (the characterization of intermediates (Fig. S1 and S2) and GC4AOEG (Fig. S3) are in the ESI).Open in a separate windowFig. 2Synthetic route of GC4AOEG and fluorescence titrations. (A(a)) NaH, dry DMF, and 75 °C; (b) HNO3, AcOH, dry CH2Cl2, and r.t.; (c) SnCl2·2H2O, C2H5OH/AcOEt (1 : 1, v/v), and reflux; (d) 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea, Et3N, AgNO3, dry CH2Cl2, and r.t.; (e) SnCl4, AcOEt, and r.t. (B) Direct fluorescence titration of 0.5 μM EY with different concentrations of GC4AOEG (up to 13.8 μM) in HEPES buffer (10 mM, pH = 7.4), and λex = 517 nm. (Inset) The associated titration curve at λem = 537 nm and best fit according to a 1 : 1 binding stoichiometry. (C) Competitive fluorescence titration of GC4AOEG·EY (4.0/0.5 μM) with UFH (up to 8.4 μM in the concentration of monomer units of UFH), and λex = 517 nm. (Inset) The associated titration curve at λem = 537 nm and best fit according to a n : 1 competitive binding model, where n = 0.88.The binding affinity between GC4AOEG and UFH was firstly investigated via a competitive titration approach. In this paper, we defined the repeated disaccharide unit as the UFH monomer unit, and the UFH concentration in this paper is the UFH monomer unit concentration. Eosin Y (EY) was selected as the reporter dye, owing to its strong complexation with GC4AOEG and the drastic fluorescence quenching after complexation. The equilibrium association constant (Ka), between GC4AOEG and EY, was determined by direct fluorescence titration and fitted as (2.37 ± 0.12) × 105 M−1 with 1 : 1 binding stoichiometry (Fig. 2B). The displacement of EY from GC4AOEG·EY by gradual addition of UFH resulted in the recovery of the intrinsic emission of EY. The best-fitting of the competitive titration model afforded ca. 1 : 1 binding stoichiometry between GC4AOEG and each monomer unit of UFH, as well as an ultrahigh binding affinity Ka of (1.25 ± 0.13) × 107 M−1 (Fig. 2C).For in vitro analysis of the effectiveness of GC4AOEG against UFH, the activated partial thromboplastin time (aPTT) assay was conducted. The result (Fig. S8) indicates that one equivalent of GC4AOEG (to UFH monomer) fully neutralized UFH, similar to protamine. Very importantly, it is obvious that protamine alone negatively influenced the aPTT time. In contrast, GC4AOEG alone did not affect the clotting time, suggesting that GC4AOEG can specifically bind with UFH directly with minimal side influences. The coagulation factor X levels in the plasma analyzed via the enzyme-linked immunosorbent assay (ELISA) further confirmed the safety and reversal effect of GC4AOEG towards UFH (Fig. S9).Next, the biocompatibility of GC4AOEG was investigated in vitro. As an alkyl derivative of guanidinocalixarene, GC4A-6C (Fig. S4 and S5), which has a similar number of carbons (hexyl groups) at the lower rim to that of GC4AOEG, was also synthesized and examined in this study for comparative purposes. As shown in Fig. 3A and B, GC4AOEG (up to 200 μM) showed remarkably low cytotoxicity in several cell lines via MTT assays, in dramatic contrast to the relatively high cytotoxicity of GC4A-6C (Fig. 3C and D). The cellular toxicity of GC4A-6C was consistent with previous literature.36 In addition, alkyl derivatives of calixarene were generally more toxic than those without alkyl chains,37 likely attributed to their amphiphilic properties that may facilitate cell membrane disruption.38–40 The results suggested that the much-improved safety profile of GC4AOEG was attributed to oligoethylene glycol functionalization. Meanwhile, it is well known that cationic polymers or oligomers often show poor biocompatibility in the circulation system due to their non-selective binding to negatively charged RBC, resulting in RBC aggregation or hemolysis.41 Therefore, hemolysis and hemagglutination assays were conducted according to a method previously reported,42,43 with experimental details described in the method. The percent hemolysis of GC4A-6C (25, 50, 100 and 200 μM, respectively) was over 90%, which would limit its application in the circulatory system (Fig. S6), as a hemolysis ratio below 5% is considered safe.44 Conversely, GC4AOEG exhibited nearly negligible (less than 3%) hemolytic activity at concentrations of up to 200 μM, and no agglutination was visualized during incubation with RBC (Fig. 3F), implying that OEG functionalization at the lower rim reduced non-specific interactions with the RBC membrane, resulting in less disturbance of the membrane structure and function or cellular aggregations.Open in a separate windowFig. 3Biocompatibility study in cell lines and RBC. Cell viabilities of (A, C) 4T1 and (B, D) 293T, cells treated with different concentrations of GC4AOEG or GC4A-6C for 24 h. Each data point represents the mean ± S.E.M. from a set of experiments (n = 4). (E, G) Hemolysis test of GC4AOEG at different concentrations (NC = negative control; PC = positive control). Each data point represents the mean ± S.E.M. from a set of experiments (n = 3). (F) Agglutination test of RBC incubated with GC4AOEG at 2.0% hematocrit in normal saline.Inspired by the above findings, we further examined whether GC4AOEG may reverse bleeding in different mouse bleeding models under heparinization (with the experimental details described in the method, and the standard curve for the quantification of blood loss volume is showed in Fig. S7),45 with both the total time of bleeding and total volume of lost blood evaluated for each model. As a proof of concept, 200 U kg−1 UFH and 2.245 mg kg−1 GC4AOEG (molar ratio of GC4AOEG and each monomer unit of UFH = 1 : 1) were respectively used, as representative doses in the study and the dose of UFH was based on a literature report.46 In a mouse tail transection model as an external bleeding model, as shown in Fig. 4A–C, after tail transection, the bleeding time and blood loss volume for mice treated with normal saline were 58.9 ± 10.7 min and 72.2 ± 15.8 μL, respectively. As expected, treatment with UFH increased the bleeding time and blood volume to 121.5 ± 20.2 min and 264.0 ± 43.6 μL, respectively. In contrast, the bleeding time was dramatically reduced down to the blank control level, when the mice were treated with GC4AOEG at the same time of, or 30 s after, i.v. administration of UFH (53.8 ± 11.4 min and 89.0 ± 13.3 min, respectively). Accordingly, the blood loss volume of mice successively treated with UFH and GC4AOEG (1 : 1 ratio) reached the control level (72.6 ± 14.3 μL), indicating that the strong binding affinity between GC4AOEG and UFH ensured their recognition in vivo. Of note, there was no significant difference between the GC4AOEG treated group (without heparinization) and the saline treated group, suggesting a decent safety profile of the artificial receptor.Open in a separate windowFig. 4Reversal efficacy in in vivo mouse models. (A–C) Mouse tail transection model. (A) Scheme of the mouse tail transection model. (B) Total time of bleeding and (C) blood loss volume. (D–F & J) Mouse liver injury model. (D) Scheme of the mouse liver injury model. (E) Total time of bleeding and (F) blood loss weight. (J) Pictures exhibiting bleeding in liver injury before and after treatment. (G–I & K) Mouse femoral artery model. (G) Scheme of the mouse femoral artery model. (H) Total time of bleeding and (I) blood loss weight. (K) Pictures exhibiting bleeding in the femoral artery before and after treatment. All of those models were i.v. administration with normal saline (control), GC4AOEG (2.245 mg kg−1), or UFH (200 U kg−1) without and with GC4AOEG (2.245 mg kg−1, 1 : 1 molar stoichiometry of GC4AOEG and the monomer unit of UFH), and UFH–GC4AOEG 1 : 1 successively (GC4AOEG at a dose of 2.245 mg kg−1 30 s after UFH administration) respectively were quantified. Data presented are the mean ± S.E.M. (n = 6). *p < 0.05, ****p < 0.001, and ns represents “no significant difference” between the experimental group and the control group.In addition to external bleeding, internal bleeding such as liver injury model (Fig. 4D) was established in mice, and GC4AOEG''s reversal of UFH was further evaluated in vivo. Mice were i.v. administered with normal saline (control), GC4AOEG (2.245 mg kg−1), or UFH (200 U kg−1) without and with GC4AOEG (2.245 mg kg−1), and successive UFH–GC4AOEG 1 : 1 (30 s in between), respectively. In 2 minutes, the abdomen was surgically opened to expose the liver. A wound of 0.5 cm length and 2 mm depth, in the left lobe of the liver, was created. Considerable bleeding was immediately observed in the UFH treatment group (Fig. 4J), with the total bleeding time lasting for 450.5 ± 46.8 s, and the total blood loss of 571.0 ± 35.0 mg, in contrast to 143.7 ± 14.7 s total bleeding time and 238.0 ± 45.0 mg total blood loss observed in the saline treated group. Interestingly, the UFH–GC4AOEG treated group showed no significant difference from the normal saline treated group. To simulate the clinical use scenario, GC4AOEG was injected after UFH''s administration, and significantly reduced bleeding (from both time and volume perspectives) was observed, suggesting effective inhibition of the adverse effects of UFH, by GC4AOEG (Fig. 4E and F). GC4AOEG alone (without heparinization) did not exhibit any hematological toxicity in this model. To further evaluate the inhibitory effects of GC4AOEG against UFH in a preclinical model, a more serious internal bleeding model, femoral artery bleeding mouse model, was employed, and the treatment plan followed the previous two models described as above. Upon administration, the skin of the right leg and the overlying muscles were removed to expose the femoral artery and sciatic nerve. After an open injury at the middle segment of the femoral artery was created with a surgical scissor, blood gushed out immediately from the injured site (Fig. 4G and K). As shown in Fig. 4H and I, the longest average bleeding time (16.0 ± 1.9 min) and blood loss weight (103.8 ± 16.9 mg) were observed in the UFH treatment group of mice, in dramatic contrast to the bleeding time and blood loss of 3.9 ± 0.4 min and 24.7 ± 4.5 mg, respectively, in the normal saline treated group of mice. A bleeding time of 3.6 ± 0.4 min and blood loss of 20.8 ± 7.4 mg were recorded in the UFH–GC4AOEG treatment group. When UFH and GC4AOEG (at 1 molar equivalent) were successively injected, a bleeding time of 5.3 ± 0.7 min and blood loss of 27.7 ± 5.8 mg were noted, suggesting the significant reversal effects of GC4AOEG on UFH. Collectively, in all of the three bleeding models including internal and external bleeding models, i.v. administration of GC4AOEG significantly reversed UFH-induced excessive bleeding in external and internal injuries. More importantly, GC4AOEG alone exhibited negligible hematological activity, unlike other previously reported cationic small molecules, polymers, oligomers and macrocycles.Furthermore, in order to further verify the safety profile of GC4AOEG at the effective dose in vivo, acute toxicity evaluation was performed in a mouse model. After the i.v. injection of GC4AOEG in mice at a dose of 2.245 mg kg−1 (i.v. injection of normal saline as the control group), the body weight, behaviors, and overall survival of the treated mice were monitored every day for 3 weeks. All the treated mice remained alive and showed normal behaviors, as well as normal body weight evolvement similar to that of the control group (Fig. 5A). On day 21 post administration, mice were euthanized for blood and organ samples were harvested (for details see the method). The organ indexes of representative major organs including the heart, liver, spleen, lungs, and kidneys isolated from the GC4AOEG treated mice were comparable to those of the mice administered with normal saline, with no significant differences observed (Fig. 5B). Hematological parameters such as the counts of whole blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) and hemoglobin (HGB) (Fig. 5C), as well as the serum concentrations of liver and kidney function biomarkers including blood urea nitrogen (BUN), creatinine (crea), urea alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were all analyzed thoroughly (Fig. 5D and E). These results indicated that the hematological parameters, renal and hepatic functions of the mice treated with GC4AOEG were comparable with those of the mice in the normal saline treated group. Moreover, histopathological examinations of the major organs of the GC4AOEG treated mice showed normal microstructures comparable with those of the control group (Fig. 5F). Collectively, these results suggested that the i.v. administration of GC4AOEG at the therapeutic dose is safe.Open in a separate windowFig. 5Preliminary acute toxicity evaluations on GC4AOEG. (A) Weight changes of mice after i.v. administration with a single dose of GC4AOEG. (B) Major organ indexes of the mice on day 21 post-administration with GC4AOEG. (C) Hematological parameters of the blood samples collected from the mice on day 21 after i.v. administration of GC4AOEG. (D) Renal and (E) hepatic functional biomarkers in the blood samples collected from the mice on day 21 after i.v. administration of GC4AOEG. Data are presented as mean ± S.E.M.; n = 6 for each group. (F) H&E histopathological analysis of the major organs from mice sacrificed 21 days after being injected with saline and GC4AOEG (2.245 mg kg−1). Scale bar = 100 μm.  相似文献   
118.
制备了酸性磷酸酶检测底物2,6-二氯-4-乙酰基苯基磷酸酯(DCAP-P)。以2,6-二氯苯酚为原料,经酰化反应、AlCl3催化F-C重排、碱化成盐、磷酯化、水解等5步反应,制备了DCAP-P,并对F-C重排、磷酯化条件进行了改进。  相似文献   
119.
The title compounds 6a—6f were prepared with high yield via intramolecular Wittig reaction of methyl 3-perfluoroalkyl-6-peifluoroacyl-2-triphenylphosphoranylidenchex-3,5-dienoates (5a—5i) which were obtained from the reaction of 3-perfluoroacylprop-2-enylidenetriphenylphosphoranes (3a—3c) with methyl perfluoroalkynoates (4a—4c).  相似文献   
120.
Ion excitation in a linear quadrupole ion trap with an added octopole field   总被引:2,自引:0,他引:2  
Modeling of ion motion and experimental investigations of ion excitation in a linear quadrupole trap with a 4% added octopole field are described. The results are compared with those obtained with a conventional round rod set. Motion in the effective potential of the rod set can explain many of the observed phenomena. The frequencies of ion oscillation in the x and y directions shift with amplitude in opposite directions as the amplitudes of oscillation increase. Excitation profiles for ion fragmentation become asymmetric and in some cases show bistable behavior where the amplitude of oscillation suddenly jumps between high and low values with very small changes in excitation frequency. Experiments show these effects. Ions are injected into a linear trap, stored, isolated, excited for MS/MS, and then mass analyzed in a time-of-flight mass analyzer. Frequency shifts between the x and y motions are observed, and in some cases asymmetric excitation profiles and bistable behavior are observed. Higher MS/MS efficiencies are expected when an octopole field is added. MS/MS efficiencies (N(2) collision gas) have been measured for a conventional quadrupole rod set and a linear ion trap with a 4% added octopole field. Efficiencies are chemical compound dependent, but when an octopole field is added, efficiencies can be substantially higher than with a conventional rod set, particularly at pressures of 1.4 x 10(-4) torr or less.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号