首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139394篇
  免费   4090篇
  国内免费   2305篇
化学   79636篇
晶体学   2205篇
力学   5710篇
综合类   102篇
数学   13483篇
物理学   44653篇
  2020年   1273篇
  2019年   1236篇
  2018年   1166篇
  2016年   2003篇
  2015年   1675篇
  2014年   2148篇
  2013年   5931篇
  2012年   4705篇
  2011年   5701篇
  2010年   3644篇
  2009年   3435篇
  2008年   4947篇
  2007年   4897篇
  2006年   4858篇
  2005年   4686篇
  2004年   4043篇
  2003年   3653篇
  2002年   3601篇
  2001年   3946篇
  2000年   2955篇
  1999年   2491篇
  1998年   2129篇
  1997年   2087篇
  1996年   2000篇
  1995年   1932篇
  1994年   1680篇
  1993年   1640篇
  1992年   1859篇
  1991年   1845篇
  1990年   1745篇
  1989年   1736篇
  1988年   1722篇
  1987年   1704篇
  1986年   1620篇
  1985年   2169篇
  1984年   2281篇
  1983年   1900篇
  1982年   2224篇
  1981年   2042篇
  1980年   2082篇
  1979年   2060篇
  1978年   2188篇
  1977年   2090篇
  1976年   2119篇
  1975年   2059篇
  1974年   1900篇
  1973年   2105篇
  1972年   1284篇
  1968年   1051篇
  1967年   1101篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
31.
A simple to use nuclear magnetic resonance analysis method has been tested on complex 1H, 19F, and 13C multiplets. This open-source line-shape analysis method analysis of total lineshape (ANATOLIA)1 provides some significant advantages over traditional assign-iterate methods of NMR spectral analysis by avoiding false minima and progressing optimisation to the global minimum. The target molecules are 1-perfluorotol-4-yl-2-perfluorotol-4-yl-oxymethyl-1H-benzimidazole (molecule-I) and 1-tetrafluoropyrid-4-yl-2-tetrafluoropyrid-4-yl-thio-1H-benzimidazole (molecule-II) which were produced as part of a family of fluorinated drug scaffolds prepared for anticancer and antiparasitic screening. Spectra display significant second-order effects with 1H Δδ = 3.68 and 4.67 Hz for the aromatic hydrogen “triplets”, with 19F 4JAA', 4JBB', 4JXX', and 4JYY' coupling constants range from +4.8 to −14.0 Hz and for 13C-isotopomers 19F Δδ of up to 111.56 Hz. A spin-system of six coupling nuclei (HaHbHcHd FYFY') was analysed in 12 s, a spin-system of nine coupling fluorine nuclei (AA'BB'CCC-YY') was analysed within 2 min, and 10 coupling nuclei (XX'YY'ZZZ-BB'-Hd) was optimised in 6 min using a laptop computer. ANATOLIA was also robust enough to be able to yield accurate spectral values from inaccurate input values. In both compounds, a fluorine–fluorine coupling constant was identified between the two fluoro-aromatic rings (FBB' and FYY') of +4.05 and +4.67 Hz and attributed to a through-space interaction. Ab initio structure optimisations and coupling constant calculations provided useful input data for spectral analysis. A modern 19F nuclear magnetic resonance spectrum of perfluorotoluene (octafluorotoluene) and analysis from 1975 was used as a test data set to assess ANATOLIA.  相似文献   
32.
The mechanism of lithium insertion that occurs in an iron oxyfluoride sample with a hexagonal–tungsten–bronze (HTB)-type structure was investigated by the pair distribution function. This study reveals that upon lithiation, the HTB framework collapses to yield disordered rutile and rock salt phases followed by a conversion reaction of the fluoride phase toward lithium fluoride and nanometer-sized metallic iron. The occurrence of anionic vacancies in the pristine framework was shown to strongly impact the electrochemical activity, that is, the reversible capacity scales with the content of anionic vacancies. Similar to FeOF-type electrodes, upon de-lithiation, a disordered rutile phase forms, showing that the anionic chemistry dictates the atomic arrangement of the re-oxidized phase. Finally, it was shown that the nanoscaling and structural rearrangement induced by the conversion reaction allow the in situ formation of new electrode materials with enhanced electrochemical properties.  相似文献   
33.
Defects play a central role in controlling the electronic properties of two-dimensional (2D) materials and realizing the industrialization of 2D electronics. However, the evaluation of charged defects in 2D materials within first-principles calculation is very challenging and has triggered a recent development of the WLZ (Wang, Li, Zhang) extrapolation method. This method lays the foundation of the theoretical evaluation of energies of charged defects in 2D materials within the first-principles framework. Herein, the vital role of defects for advancing 2D electronics is discussed, followed by an introduction of the fundamentals of the WLZ extrapolation method. The ionization energies (IEs) obtained by this method for defects in various 2D semiconductors are then reviewed and summarized. Finally, the unique defect physics in 2D dimensions including the dielectric environment effects, defect ionization process, and carrier transport mechanism captured with the WLZ extrapolation method are presented. As an efficient and reasonable evaluation of charged defects in 2D materials for nanoelectronics and other emerging applications, this work can be of benefit to the community.  相似文献   
34.
35.
36.
Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme β-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe a new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure–activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.  相似文献   
37.
38.
In this paper, we review some results over the last 10-15 years on elliptic and parabolic equations with discontinuous coefficients. We begin with an approach given by N. V. Krylov to parabolic equations in the whole space with $\rm{VMO}_x$ coefficients. We then discuss some subsequent development including elliptic and parabolic equations with coefficients which are allowed to be merely measurable in one or two space directions, weighted $L_p$estimates with Muckenhoupt ($A_p$) weights, non-local elliptic and parabolic equations, as well as fully nonlinear elliptic and parabolic equations.  相似文献   
39.
Shi  D.  Feng  J.  Wang  J.  Zhao  W.  Li  X. 《Kinetics and Catalysis》2020,61(5):750-757
Kinetics and Catalysis - A series of Cu-SSZ-13@CeO2 catalysts with surface modification with CeO2 was prepared by the modified self-resemble method based on the one-pot synthesized Cu-SSZ-13...  相似文献   
40.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号