首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   4篇
化学   117篇
晶体学   5篇
力学   6篇
数学   30篇
物理学   49篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   8篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2007年   11篇
  2006年   4篇
  2005年   9篇
  2004年   3篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   5篇
  1992年   2篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   1篇
  1986年   5篇
  1985年   7篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1980年   5篇
  1979年   8篇
  1978年   8篇
  1977年   5篇
  1976年   6篇
  1975年   2篇
  1974年   2篇
  1973年   6篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   3篇
  1967年   1篇
  1966年   1篇
  1936年   2篇
  1882年   1篇
排序方式: 共有207条查询结果,搜索用时 343 毫秒
181.
Donaldson EM 《Talanta》1976,23(11-12):823-827
A method for determining 0.0001–0.10% of tellurium in copper, nickel, molybdenum, lead and zinc concentrates is described. After sample decomposition, tellurium is separated from most of the matrix elements by co-precipitation with hydrous ferric oxide from an ammoniacal medium. After reprecipitation of tellurium and iron, the precipitate is dissolved in 12M hydrochloric acid, tellurium(VI) is reduced to the quadrivalent state by heating, and separated from iron, lead and other co-precipitated elements by chloroform extraction of its xanthate. The yellow ion-association complex formed between tellurium(IV) hexabromide and diantipyrylmethane is extracted into chloroform from a 2M sulphuric acid-0.6M potassium bromide medium. The molar absorptivity of the complex is 1.82 × 103 l.mole−1.mm−1 at 336 nm, the wavelength of maximum absorption. Small amounts of iron, copper and molybdenum are co-extracted as xanthates under the proposed conditions but do not cause error in the result. Interference from antimony, which is co-extracted as the chloro-complex, is eliminated by washing the extract with water. The proposed method is also applicable to brasses.  相似文献   
182.
Donaldson EM 《Talanta》1969,16(12):1505-1512
A method for determining 0.0005–0.10% of titanium in high-purity molybdenum and tungsten metals is described. After sample dissolution, titanium is separated from the matrix materials by chloroform extraction of its cupferronate from an alkaline (pH 8) tartrate-EDTA medium, then determined spectrophotometrically with diantipyrylmethane at 390 nm. Interference from manganese during extraction is eliminated with sodium sulphite. Iron, zirconium, thorium, tin, aluminium and antimony are partially extracted under the proposed conditions, but moderate amounts of these elements may be present in the sample solution without causing error in the results. Interference from iron(III) during colour development is eliminated with ascorbic acid. Other impurities in the two high-purity metals described do not interfere in the proposed method.  相似文献   
183.
A lower limit to the OH(X2Π) vibrational excitation produced by the reaction O(1D) + H2 has been observed using a low-pressure infrared chemiluminescence apparatus. The O(1D) was generated by laser photolysis of O3. The measured OH(v') vibrational distribution is inverted; it peaks at v' = 2.  相似文献   
184.
Donaldson EM 《Talanta》1976,23(3):163-171
Four titrimetric methods for the determination of lead in ores were evaluated. In the absence of bismuth and indium, a method based on EDTA titration of lead, after chloroform extraction of lead diethyldithiocarbamate, yields accurate and more precise results than the other methods evaluated. Interference from indium can be avoided by di-isopropyl ether extraction of its bromide from 6M hydrobromic acid. Interference from bismuth can be eliminated by separating it from lead by chloroform extraction of its xanthate from 2M hydrochloric acid-tartaric acid media.  相似文献   
185.
Donaldson EM  Wang M 《Talanta》1986,33(3):233-242
Methods for determining ~ 0.2 mug g or more of silver and cadmium, ~ 0.5 mug g or more of copper and ~ 5 mug g or more of antimony, bismuth and indium in ores, concentrates and related materials are described. After sample decomposition and recovery of antimony and bismuth retained by lead and calcium sulphates, by co-precipitation with hydrous ferric oxide at pH 6.20 +/- 0.05, iron(III) is reduced to iron(II) with ascorbic acid, and antimony, bismuth, copper, cadmium and indium are separated from the remaining matrix elements by a single methyl isobutyl ketone extraction of their iodides from ~2M sulphuric acid-0.1M potassium iodide. The extract is washed with a sulphuric acid-potassium iodide solution of the same composition to remove residual iron and co-extracted zinc, and the extracted elements are stripped from the extract with 20% v v nitric acid-20% v v hydrogen peroxide. Alternatively, after the removal of lead sulphate by filtration, silver, copper, cadmium and indium can be extracted under the same conditions and stripped with 40% v v nitric acid-25% v v hydrochloric acid. The strip solutions are treated with sulphuric and perchloric acids and ultimately evaporated to dry ness. The individual elements are determined in a 24% v v hydrochloric acid medium containing 1000 mug of potassium per ml by atomic-absorption spectrophotometry with an air-acetylene flame. Tin, arsenic and molybdenum are not co-extracted under the conditions above. Results obtained for silver, antimony, bismuth and indium in some Canadian certified reference materials by these methods are compared with those obtained earlier by previously published methods.  相似文献   
186.
The products obtained from molten and aqueous SnF2:MI systems (M = Na, K, Rb, and NH4) have been studied. The Mössbauer data for phases with 1:1, 2:1, and 3:1 SnF2:MI molar ratios are reported. The MSnIF2 phases show evidence of two tin sites, one of which has Mössbauer parameters attributable to an octahedral tin(II) environment. The materials obtained are all colored and the reasons for these colors are discussed.  相似文献   
187.
Donaldson EM 《Talanta》1989,36(5):543-548
A method for determining approximately 0.5, mug/g or more of cobalt, nickel and lead and approximately 3 mug/g or more of bismuth and indium in ores, soils and related materials is described. After sample decomposition and dissolution of the salts in dilute hydrochloric-tartaric acid solution, iron(III) is reduced with ascorbic acid and the resultant iron(II) is complexed with ammonium fluoride. Cobalt, nickel, lead, bismuth and indium are subsequently separated from iron, aluminium, zinc and other matrix elements by a triple chloroform extraction of their xanthate complexes at pH 2.00 +/- 0.05. After the removal of chloroform by evaporation and the destruction of the xanthates with nitric and perchloric acids, the solution is evaporated to dryness and the individual elements are ultimately determined in a 20% v/v hydrochloric acid medium containing 1000 mug/ml potassium by atomic-absorption spectrometry with an air-acetylene flame. Co-extraction of arsenic and antimony is avoided by volatilizing them as the bromides during the decomposition step. Small amounts of co-extracted molybdenum, iron and copper do not interfere.  相似文献   
188.
He Z  Yi CS  Donaldson WA 《Organic letters》2003,5(9):1567-1569
The addition of ethylene to 1,3-dienes and 1-vinylcycloalkenes, catalyzed by two ruthenium complexes, proceeds in a regioselective fashion to afford 3-methyl-1,4-dienes as products. For a steroidal-based 1-vinylcycloalkene, the addition is stereospecific, giving a product with a 20(S) configuration. [reaction: see text]  相似文献   
189.
Donaldson EM 《Talanta》1970,17(7):583-591
A method for determining up to 0.15% of vanadium in high-purity niobium and tantalum metals, cast iron, steel, non-ferrous alloys and silicates is described. The proposed method is based on the extraction of a red vanadium(V)-N-benzoyl-N-phenylhydroxylamine complex into chloroform from a sulphuric-hydrofluoric acid medium containing excess of ammonium persulphate as oxidant. The molar absorptivity of the complex is 428 l.mole(-1).mm(-5) at 475 nm, the wavelength of maximum absorption. Interference from chromium(VI) and cerium(IV) is eliminated by reduction with iron(II). Common ions, including large amounts of titanium, zirconium, molybdenum and tungsten, do not interfere.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号