首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3996篇
  免费   47篇
  国内免费   27篇
化学   2717篇
晶体学   66篇
力学   124篇
数学   725篇
物理学   438篇
  2020年   32篇
  2016年   43篇
  2015年   38篇
  2014年   45篇
  2013年   172篇
  2012年   133篇
  2011年   153篇
  2010年   83篇
  2009年   81篇
  2008年   157篇
  2007年   157篇
  2006年   188篇
  2005年   175篇
  2004年   144篇
  2003年   148篇
  2002年   111篇
  2001年   62篇
  2000年   59篇
  1999年   44篇
  1998年   32篇
  1997年   59篇
  1996年   59篇
  1995年   61篇
  1994年   65篇
  1993年   77篇
  1992年   50篇
  1991年   65篇
  1990年   51篇
  1989年   50篇
  1988年   47篇
  1987年   42篇
  1986年   43篇
  1985年   74篇
  1984年   84篇
  1983年   54篇
  1982年   87篇
  1981年   78篇
  1980年   68篇
  1979年   81篇
  1978年   72篇
  1977年   73篇
  1976年   61篇
  1975年   57篇
  1974年   68篇
  1973年   81篇
  1972年   40篇
  1971年   39篇
  1970年   35篇
  1969年   28篇
  1968年   30篇
排序方式: 共有4070条查询结果,搜索用时 15 毫秒
911.
Cd(1-x)Zn(x)Te (CZT) crystals are the leading semiconductors for radiation detection, but their application is limited by the high cost of detector-grade materials. High crystal costs primarily result from property nonuniformity that causes low manufacturing yield. Although tremendous efforts have been made in the past to reduce Te inclusions/precipitates in CZT, this has not resulted in an anticipated improvement in material property uniformity. Moreover, it is recognized that in addition to Te particles, dislocation cells can also cause electric field perturbations and the associated property nonuniformities. Further improvement of the material, therefore, requires that dislocations in CZT crystals be understood and controlled. Here, we use a recently developed CZT bond order potential to perform representative molecular dynamics simulations to study configurations, energies, and mobilities of 29 different types of possible dislocations in CdTe (i.e., x = 1) crystals. An efficient method to derive activation free energies and activation volumes of thermally activated dislocation motion will be explored. Our focus gives insight into understanding important dislocations in the material and gives guidance toward experimental efforts for improving dislocation network structures in CZT crystals.  相似文献   
912.
The hydrodynamic stability of a low speed, plane, non-isothermal laminar wall jet at a constant temperature boundary condition was investigated theoretically and experimentally. The mean velocity and temperature profiles used in the stability analysis were obtained by implementing the Illingworth–Stewartson transformation that allows one to extend the classical Glauert solution to a thermally non-uniform flow. The stability calculations showed that the two unstable eigenmodes coexisting at moderate Reynolds numbers are significantly affected by the heat transfer. Heating is destabilizing the flow while cooling is stabilizing it. However, the large-scale instabilities associated with the inflection point of the velocity profile still amplify in spite of the high level of the stabilizing temperature difference. The calculated stability characteristics of the wall jet with heat transfer were compared with experimental data. The comparison showed excellent agreement for small amplitudes of the imposed perturbations. The agreement is less good for the phase velocities of the sub-harmonic wave and this is attributed to experimental difficulties and to nonlinear effects.  相似文献   
913.
A magnetic resonance imaging cardiac magnetic susceptometry (MRI-CS) technique for assessing cardiac tissue iron concentration based on phase mapping was developed. Normal control subjects (n=9) and thalassemia patients (n=13) receiving long-term blood transfusion therapy underwent MRI-CS and MRI measurements of the cardiac relaxation rate R2*. Using MRI-CS, subepicardium and subendocardium iron concentrations were quantified exploiting the hemosiderin/ferritin iron specific magnetic susceptibility. The average of subepicardium and subendocardium iron concentrations and R2* of the septum were found to be strongly correlated (r=0.96, P<.0001), and linear regression analysis yielded CIC (μg Fe/gwet tissue)=(6.4±0.4)·R2* septum (s−1) − (120±40). The results demonstrated that septal R2* indeed measures cardiac iron level.  相似文献   
914.
The rotationally resolved depletion spectrum of hypochlorous acid embedded in helium nanodroplets in the 2.8 μm region is reported. The narrow a-type lines are asymmetrically skewed in the direction of the band origin, and an analysis of their line shapes based on the chirped damped oscillator function introduced by van Staveren and Apkarian [J. Chem. Phys. 133, 054506 (2010).] yields a response time of the helium solvent of 1 ns. The b-type lines are much broader due to the greater number of droplet states available for relaxation of the excited rotational states.  相似文献   
915.
A methodology for the design of polar, inorganic structures is demonstrated here with the packing of lambda (Λ)-shaped basic building units (BBUs). Noncentrosymmetric (NCS) solids with interesting physical properties can be created with BBUs that lack an inversion center and are likely to pack into a polar configuration; previous methods to construct these solids have used NCS octahedra as BBUs. Using this methodology to synthesize NCS solids, one must increase the coordination of the NCS octahedra with maintenance of the noncentrosymmetry of the bulk. The first step in this progression from an NCS octahedron to an inorganic NCS solid is the formation of a bimetallic BBU. This step is exemplified with the compound CuVOF(4)(H(2)O)(7): this compound, presented here, crystallizes in an NCS structure with ordered, isolated [Cu(H(2)O)(5)](2+) cations and [VOF(4)(H(2)O)](2-) anions into Λ-shaped, bimetallic BBUs to form CuVOF(4)(H(2)O)(6)·H(2)O, owing to the Jahn-Teller distortion of Cu(2+). Conversely, the centrosymmetric heterotypes with the same formula MVOF(4)(H(2)O)(7) (M(II) = Co, Ni, and Zn) exhibit ordered, isolated [VOF(4)(H(2)O)](2-) and [M(H(2)O)(6)](2+) ionic species in a hydrogen bond network. CuVOF(4)(H(2)O)(7) exhibits a net polar moment while the heterotypes do not; this demonstrates that Λ-shaped BBUs give a greater probability for and, in this case, lead to NCS structures.  相似文献   
916.
Threonine aldolases are versatile pyridoxal-5′-phosphate (PLP)-dependent enzymes key to glycine, serine and threonine metabolism. Because they catalyze the reversible addition of glycine to an aldehyde to give β-hydroxy-α-amino acids, they are also attractive as biotechnological catalysts for the diastereoselective synthesis of many pharmaceutically useful compounds. To study and evolve such enzymes, we have developed a simple selection system based on the simultaneous inactivation of four genes involved in glycine biosynthesis in Escherichia coli. Glycine prototrophy in the deletion strain is restored by expression of a gene encoding an aldolase that converts β-hydroxy-α-amino acids, provided in the medium, to glycine and the corresponding aldehyde. Combinatorial mutagenesis and selection experiments with a previously uncharacterized l-threonine aldolase from Caulobacter crescentus CB15 (Cc-LTA) illustrate the power of this system. The codons for four active site residues, His91, Asp95, Glu96, and Asp176, were simultaneously randomized and active variants selected. The results show that only His91, which π-stacks against the PLP cofactor and probably serves as the catalytic base in the carbon-carbon bond cleavage step, is absolutely required for aldolase activity. In contrast, Asp176, one of the most conserved residues in this enzyme superfamily, can be replaced conservatively by glutamate, albeit with a >5000-fold decrease in efficiency. Though neither Asp95 nor Glu96 is catalytically essential, they appear to modulate substrate binding and His91 activity, respectively. The broad dynamic range of this novel selection system should make it useful for mechanistic investigations and directed evolution of many natural and artificial aldolases.  相似文献   
917.
We wish to report the synthesis, crystal structures, spectroscopic and electrochemical properties of several new Pt(II) heteroleptic complexes containing the thiacrown, 9S3 (1,4,7-trithiacyclononane) with a series of substituted phenanthroline ligands and related diimine systems. These five ligands are 5,6-dimethyl-1,10-phenanthroline(5,6-Me2-phen), 4,7-dimethyl-1,10-phenanthroline(4,7-Me2-phen), 4,7-diphenyl-1,10-phenanthroline(4,7-Ph2-phen), 2,2′-bipyrimidine(bpm), and pyrazino[2,3-f]quinoxaline or 1,4,5,8-tetraazaphenanthrene(tap). All complexes have the general formula [Pt(9S3)(N2)](PF6)2 (N2 = diimine ligand) and form similar structures in which the Pt(II) center is surrounded by a cis arrangement of the two N donors from the diimine chelate and two sulfur atoms from the 9S3 ligand. The third 9S3 sulfur in each structure forms a longer interaction with the platinum resulting in an elongated square pyramidal structure, and this distance is sensitive to the identity of the diimine ligand. In addition, we report the synthesis, structural, electrochemical, and spectroscopic properties of related Pd(II) 9S3 complex with tap. The 195Pt NMR chemical shifts for the six Pt(II) complexes show a value near −3290 ppm, consistent with a cis-PtS2N2 coordination sphere although more electron-withdrawing ligands such as tap show resonances shifted by almost 100 ppm downfield. The physicochemical properties of the complexes generally follow the electron-donating or withdrawing properties of the phenanthroline substituents.  相似文献   
918.
919.
New evidence is presented for the observation of a muoniated radical in the Mu + Br(2) system, from μSR longitudinal field (LF) repolarisation studies in the gas phase, at Br(2) concentrations of 0.1 bar in a Br(2)/N(2) mixture at 300 K and at 10 bar total pressure. The LF repolarisation curve, up to a field of 4.5 kG, reveals two paramagnetic components, one for the Mu atom, formed promptly during the slowing-down process of the positive muon, with a known Mu hyperfine coupling constant (hfcc) of 4463 MHz, and one for a muoniated radical formed by fast Mu addition. From model fits to the Br(2)/N(2) data, the radical component is found to have an unusually high muon hfcc, assessed to be ~3300 MHz with an overall error due to systematics expected to exceed 10%. This high muon hfcc is taken as evidence for the observation of either the Br-Mu-Br radical, and hence of vibrational bonding in this H[combining low line]-L[combining low line]-H[combining low line] system, or of a MuBr(2) van der Waals complex formed in the entrance channel. Preliminary ab initio electronic structure calculations suggest the latter is more likely but fully rigorous calculations of the effect of dynamics on the hfcc for either system have yet to be carried out.  相似文献   
920.
We investigate the statistical thermodynamics and kinetics of the 1,5-hydrogen shift isomerization reaction of the 1-butoxyl radical and its reverse isomerization. The partition functions and thermodynamic functions (entropy, enthalpy, heat capacity, and Gibbs free energy) are calculated using the multi-structural torsional (MS-T) anharmonicity method including all structures for three species (reactant, product, and transition state) involved in the reaction. The calculated thermodynamic quantities have been compared to those estimated by the empirical group additivity (GA) method. The kinetics of the unimolecular isomerization reaction was investigated using multi-structural canonical variational transition state theory (MS-CVT) including both multiple-structure and torsional (MS-T) anharmonicity effects. In these calculations, multidimensional tunneling (MT) probabilities were evaluated by the small-curvature tunneling (SCT) approximation and compared to results obtained with the zero-curvature tunneling (ZCT) approximation. The high-pressure-limit rate constants for both the forward and reverse reactions are reported as calculated by MS-CVT/MT, where MT can be ZCT or SCT. Comparison with the rate constants obtained by the single-structural harmonic oscillator (SS-HO) approximation shows the importance of anharmonicity in the rate constants of these reactions, and the effect of multi-structural anharmonicity is found to be very large. Whereas the tunneling effect increases the rate constants, the MS-T anharmonicity decreases them at all temperatures. The two effects counteract each other at temperatures 385 K and 264 K for forward and reverse reactions, respectively, and tunneling dominates at lower temperatures while MS-T anharmonicity has a larger effect at higher temperatures. The multi-structural torsional anharmonicity effect reduces the final reverse reaction rate constants by a much larger factor than it does to the forward ones as a result of the existence of more low-energy structures of the product 4-hydroxy-1-butyl radical than the reactant 1-butoxyl radical. As a consequence there is also a very large effect on the equilibrium constant. The neglect of multi-structural anharmonicity will lead to large errors in the estimation of reverse reaction rate constants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号