This study aimed to determine the use of selected vegetables (pumpkin, cauliflower, broccoli, carrot) as carriers of potassium iodide (KI) and potassium iodate (KIO3) by determining changes in iodine content under various conditions of impregnation as the degree of hydration, impregnated sample temperature, and impregnation time. The influence of these conditions on iodine contents in vegetables after their fortification and storage (21 °C/230 days) was analyzed. The results showed that all selected vegetables could be efficient iodine carriers. However, the conditions of the impregnation process are crucial for fortification efficiency, particularly the degree of hydration and the temperature of the impregnated samples before drying. The results showed that the lowest iodine content was in samples fortified at 4 °C and 1:4 hydration. On the other hand, the highest reproducibility of iodine was for the following fortification conditions: temperature of −76 °C and hydration of 1:1. The studies confirmed the higher stability of iodine in KIO3 form compared to KI. To increase recovery of the introduced iodine in the product after drying, using the conditioning step at 4 °C is not recommended. We recommend freezing vegetables immediately after the impregnation process 相似文献
The realm of natural products of early diverging fungi such as Mortierella species is largely unexplored. Herein, the nonribosomal peptide synthetase (NRPS) MalA catalysing the biosynthesis of the surface-active biosurfactants, malpinins, has been identified and biochemically characterised. The investigation of the substrate specificity of respective adenylation (A) domains indicated a substrate-tolerant enzyme with an unusual, inactive C-terminal NRPS module. Specificity-based precursor-directed biosynthesis yielded 20 new congeners produced by a single enzyme. Moreover, MalA incorporates artificial, click-functionalised amino acids which allowed postbiosynthetic coupling to a fluorophore. The fluorescent malpinin conjugate penetrates mammalian cell membranes via an phagocytosis-mediated mechanism, suggesting Mortierella oligopeptides as carrier peptides for directed cell targeting. The current study demonstrates substrate-specificity testing as a powerful tool to identify flexible NRPS modules and highlights basal fungi as reservoir for chemically tractable compounds in pharmaceutical applications.Specificity profiling of a nonribosomal peptide synthetase of an early diverging fungus revealed high substrate flexibility. Feeding studies with click-functionalised amino acids enabled the production of fluorescent peptides targeting macrophages.相似文献
The century-old, well-known odd–even effect phenomenon is still a very attractive and intriguing topic in supramolecular and nano-scale organic chemistry. As a part of our continuous efforts in the study of supramolecular chemistry, we have prepared three novel aromatic alcohols (1,2-bis[2-(hydroxymethyl)phenoxy]butylene (Do4OH), 1,2-bis[2-(hydroxymethyl)phenoxy]pentylene (Do5OH) and 1,2-bis[2-(hydroxymethyl)phenoxy]hexylene (Do6OH)) and determined their crystal and molecular structures by single-crystal X-ray diffraction. In all compounds, two benzyl alcohol groups are linked by an aliphatic chain of different lengths (CH2)n; n = 4, 5 and 6. The major differences in the molecular structures were found in the overall planarity of the molecules and the conformation of the aliphatic chain. Molecules with an even number of CH2 groups tend to be planar with an all-trans conformation of the aliphatic chain, while the odd-numbered molecule is non-planar, with partial gauche conformation. A direct consequence of these structural differences is visible in the melting points—odd-numbered compounds of a particular series display systematically lower melting points. Crystal and molecular structures were additionally studied by the theoretical calculations and the melting points were correlated with packing density and the number of CH2 groups. The results have shown that the generally accepted rule, higher density = higher stability = higher melting point, could not be applied to these compounds. It was found that the denser packaging causes an increase in the percentage of repulsive H‧‧‧H interactions, thereby reducing the stability of the crystal, and consequently, the melting points. Another interesting consequence of different molecular structures is their electrochemical and antioxidative properties—a non-planar structure displays the highest oxidation peak of hydroxyl groups and moderate antioxidant activity. 相似文献
Chiral amines and alcohols are synthons of numerous pharmaceutically-relevant compounds. The previously developed enzymatic kinetic resolution approaches utilize a chiral racemic molecule and achiral acyl donor (or acyl acceptor). Thus, only one enantiodivergent step of the catalytic cycle is engaged, which does not fully exploit the enzyme’s abilities. The first carbonate-mediated example of simultaneous double chemoselective kinetic resolution of chiral amines and alcohols is described. Herein, we established a biocatalytic approach towards four optically-pure compounds (>99% ee, Enantioselectivity: E > 200) via double enzymatic kinetic resolution, engaging chiral organic carbonates as acyl donors. High enantioselectivity was ensured by extraordinary chemoselectivity in lipase-catalyzed formation of unsymmetrical organic carbonates and engaged in a process applicable for the synthesis of enantiopure organic precursors of valuable compounds. This study focused not only on preparative synthesis, but additionally the catalytic mechanism was discussed and the clear impact of this rarely observed carbonate-derived acyl enzyme was shown. The presented protocol is characterized by atom efficiency, acyl donor sustainability, easy acyl group removal, mild reaction conditions, and biocatalyst recyclability, which significantly decreases the cost of the reported process. 相似文献
We here outline the importance of open-source, accessible tools for computer-aided drug discovery (CADD). We begin with a discussion of drug discovery in general to provide context for a subsequent discussion of structure-based CADD applied to small-molecule ligand discovery. Next, we identify usability challenges common to many open-source CADD tools. To address these challenges, we propose a browser-based approach to CADD tool deployment in which CADD calculations run in modern web browsers on users’ local computers. The browser app approach eliminates the need for user-initiated download and installation, ensures broad operating system compatibility, enables easy updates, and provides a user-friendly graphical user interface. Unlike server apps—which run calculations “in the cloud” rather than on users’ local computers—browser apps do not require users to upload proprietary information to a third-party (remote) server. They also eliminate the need for the difficult-to-maintain computer infrastructure required to run user-initiated calculations remotely. We conclude by describing some CADD browser apps developed in our lab, which illustrate the utility of this approach. Aside from introducing readers to these specific tools, we are hopeful that this review highlights the need for additional browser-compatible, user-friendly CADD software. 相似文献
This paper investigates the influences of wind speed and of heat-convection coefficient on the temperature prediction of a slab. Numerical calculation of a slab temperature found that wind speed varies the slab temperature in a degree of 2–10 °C. More varying degrees occur at midday and in sunny day but less, at midnight and in a cloud day. These degrees also depend on the used heat-convection coefficients, which have different values in different models. Special emphases are paid to unearth the correlation between different heat convection coefficients and find the best alternative in the slab-temperature prediction. 相似文献
A new preparative column for the vortex counter-current chromatograph was fabricated by making many (966) cylindrical separation units to a high-density polyethylene disk and then threading them with 6–40 taps. The resulting column had a total capacity of 364 mL. The performance of this vortex column was examined with three different two-phase solvent systems each using a set of suitable test samples: hexane–ethyl acetate–methanol–0.1 M hydrochloric acid (1:1:1:1, v/v) for the separation of DNP-amino acids; 1-butanol–acetic acid–water (4:1:5, v/v) for the separation of dipeptides; and hexane–acetonitrile–water (20:15:2, v/v) for the separation of Sudan dyes. Most of the separations show high partition efficiency of over a thousand theoretical plates, as expected based on the results previously obtained in preliminary separations with a small column. Overall, the results of the present study suggest that further improvement of the partition efficiency can be obtained by the modifying column configuration.
The temperature field generated by the sudden application of a far-field mechanical loading of a periodically layered composite with an interfacial crack or with a cracked layer parallel to the interfaces is determined. As a result of the crack’s existence, the periodicities of the structure and the thermoelastic field are lost. The complexity of the resulting problem is resolved by the combined application of the representative cell method and the full (two-way) dynamic thermomechanical equations. In the former analysis, due to the loss of periodicity the dynamic thermoelastic Green’s functions are generated, in conjunction with the double finite discrete Fourier transform. In the latter one, the transformed displacements and temperature are expressed by second-order expansions and the strong-form of the elastodynamic and energy equations together with the various interfacial and the so called Born–von Karman boundary conditions are imposed in the average sense (in the transform domain). The results exhibit the induced temperature field at any point in the plane of the crack. The generated temperature fields show the cooling and heating zones in both Mode I and Mode II deformations. In addition, the adiabatic assumption (according to which the heat conduction is a priori ignored) is assessed by comparing the computed temperature field with the corresponding one based on the full thermomechanical coupling. 相似文献
The CERES experiment has measured inclusive photon production in S-Au collisions of 200 GeV/nucleon at the CERN SPS. No evidence for direct emission of photons was found. For the kinematic region 2.1<y<2.65 and 0.4 GeV/c<p??<2.0 GeV/c the yield andp??-dependence of the observed photons are well reproduced by hadron decays. Furthermore, their production rate is found to be proportional to the charged particle density. The systematic errors comparing the measured and expected photon yield result in an upper limit of 14% for the emission of direct photons in central S-Au collisions. For a photon source with a yield depending quadratically on the charged particle density the limit can be reduced to 7%. 相似文献