首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   1篇
化学   39篇
力学   1篇
数学   25篇
物理学   8篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  1996年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
71.
72.
In this paper, the enantiomeric separation of two aryloxyphenoxypropionic esters (fluazifop-butyl and quizalofop-ethyl) and a safener herbicide (mefenpyr-diethyl), which is widely used for protecting crop plants, has been studied by direct liquid chromatography (LC) with UV detection on an α1-acid glycoprotein as chiral stationary phase. Optimization of separation conditions was done by factorial experimental design. Experimental factors and ranges selected were propanol (5–10%), phosphate buffer pH (6.5–7.0), and column temperature (15–25 °C). Responses were expressed in terms of enantioresolution (R s) and adjusted retention time of the second eluted enantiomer (t r2′). The chemometric method used to explore data was response surface analysis. Multiple response analyses were carried out to determine the combination of experimental factors which simultaneously optimize experimental responses. Under optimum conditions for enantioseparation of each herbicide, partially overlapped or fully resolved enantiomers were obtained. Deconvolution tools were employed as an integration method to fit chromatographic data and to achieve a more precise enantiomeric ratio (ER) and enantiomeric fraction (EF) values. Applicability of both direct chiral LC and peak deconvolution methods was evaluated in spiked soil samples at different R/S enantiomeric ratios. Acceptable and reproducible recoveries between 71% and 96% with precision in the range 1–6% were achieved for herbicide-spiked levels from 0.50 to 9.0 μg g–1. In addition, parameters such as R s, ER, and EF were calculated and compared with values obtained using the common valley drop integration method.  相似文献   
73.
The use of non-volatile electrolytes and fully organic dyes are key issues in the development of stable dye-sensitized solar cells (DSCs). In this work we explore the performance of ZnO-based DSCs sensitized with an indoline derivative coded D149 in the presence of a pure ionic-liquid electrolyte. Commercial nanostructured zinc oxide and an electrolyte composed of iodine plus (1) pure 1-propyl-3-methyl imidazolium iodide (PMII) and (2) a blend of PMII with low-viscosity ionic liquids were employed to construct the devices. Without further additives, the fabricated devices exhibit remarkable short-circuit photocurrents and efficiencies under AM1.5 simulated sunlight (up to 10.6 mA cm?2, 2.9% efficiency, 1 sun, active area = 0.64 cm2) due to the high surface area of the ZnO film and the high absorptivity of the D149 dye. Impedance spectroscopy is used to characterize the devices. It is found that the addition of the low-viscosity ionic-liquid improves the transport features (leading to a better photocurrent) but it does not alter the recombination rate. The robustness of the dye–oxide interaction is tested by applying continuous illumination with a Xenon-lamp. It is observed that the photocurrent is reduced at a slow rate due to desorption of the D149 sensitizer in the presence of the ionic liquid. Exploration of alternative ionic-liquid compositions or modification of the ZnO surface is therefore required to make stable devices based on ZnO and fully organic dyes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号