首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   21篇
化学   191篇
晶体学   1篇
力学   5篇
数学   18篇
物理学   40篇
  2024年   1篇
  2023年   9篇
  2022年   8篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2018年   10篇
  2017年   5篇
  2016年   22篇
  2015年   8篇
  2014年   12篇
  2013年   15篇
  2012年   29篇
  2011年   25篇
  2010年   15篇
  2009年   8篇
  2008年   9篇
  2007年   22篇
  2006年   15篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
131.
The preferred adsorption sites of xenon in the recently synthesized metal-organic framework MFU-4l(arge) possessing a bimodal pore structure (with pore sizes of 12 ? and 18.6 ?) were studied via the combination of low temperature thermal desorption spectroscopy and in situ X-ray powder diffraction. The diffraction patterns were collected at 110 K and 150 K according to the temperature of the desorption maxima. The maximum entropy method was used to reconstruct the electron density distribution of the structure and to localize the adsorbed xenon using refined data of the Xe-filled and empty sample. First principles calculations revealed that Xe atoms exclusively occupy the Wyckoff 32f position at approximately 2/3 2/3 2/3 along the body diagonal of the cubic crystal structure. At 110 K, Xe atoms occupy all 32 f positions (8 atoms per pore) while at 150 K the occupancy descends to 25% (2 atoms per pore). No Xe occupation of the small pores is observed by neither experimental measurements nor theoretical studies.  相似文献   
132.
[structures: see text] The synthesis of novel 1',2'-aminomethylene bridged (6-aza-2-oxabicyclo[3.2.0]heptane) "azetidine" pyrimidine nucleosides and their transformations to the corresponding phosphoramidite building blocks (20, 39, and 42) for automated solid-phase oligonucleotide synthesis is reported. The novel bicyclonucleoside "azetidine" monomers were synthesized by two different strategies starting from the known sugar intermediate 6-O-benzyl-1,2:3,4-bis-O-isopropylidene-D-psicofuranose. Conformational analysis performed by molecular modeling (ab initio and MD simulations) and NMR showed that the azetidine-fused furanose sugar is locked in a North-East conformation with pseudorotational phase angle (P) in the range of 44.5-53.8 degrees and sugar puckering amplitude (phi(m)) of 29.3-32.6 degrees for the azetidine-modified T, U, C, and 5-Me-C nucleosides. Thermal denaturation studies of azetidine-modified oligo-DNA/RNA heteroduplexes show that the azetidine-fused nucleosides display improved binding affinities when compared to that of previously synthesized North-East sugar constrained oxetane fused analogues.  相似文献   
133.
The 2'-deoxy-2'-N,4'-C-ethylene-bridged thymidine (aza-ENA-T) has been synthesized using a key cyclization step involving 2'-ara-trifluoromethylsufonyl-4'-cyanomethylene 11 to give a pair of 3',5'-bis-OBn-protected diastereomerically pure aza-ENA-Ts (12a and 12b) with the fused piperidino skeleton in the chair conformation, whereas the pentofuranosyl moiety is locked in the North-type conformation (7 degrees < P < 27 degrees, 44 degrees < phi m < 52 degrees). The origin of the chirality of two diastereomerically pure aza-ENA-Ts was found to be due to the endocyclic chiral 2'-nitrogen, which has axial N-H in 12b and equatorial N-H in 12a. The latter is thermodynamically preferred, while the former is kinetically preferred with Ea = 25.4 kcal mol-1, which is thus far the highest observed inversion barrier at pyramidal N-H in the bicyclic amines. The 5'-O-DMTr-aza-ENA-T-3'-phosphoramidite was employed for solid-phase synthesis to give four different singly modified 15-mer antisense oligonucleotides (AONs). Their AON/RNA duplexes showed a Tm increase of 2.5-4 degrees C per modification, depending upon the modification site in the AON. The relative rates of the RNase H1 cleavage of the aza-ENA-T-modified AON/RNA heteroduplexes were very comparable to that of the native counterpart, but the RNA cleavage sites of the modified AON/RNA were found to be very different. The aza-ENA-T modifications also made the AONs very resistant to 3' degradation (stable over 48 h) in the blood serum compared to the unmodified AON (fully degraded in 4 h). Thus, the aza-ENA-T modification in the AON fulfilled three important antisense criteria, compared to the native: (i) improved RNA target affinity, (ii) comparable RNase H cleavage rate, and (iii) higher blood serum stability.  相似文献   
134.
The bulk and shear moduli of dense polycrystalline oxygen‐bearing c‐Zr3N4 were determined to be B0 = 217(20) GPa and G0 = 163(9) GPa, respectively, using laser ultrasonic technique combined with a numerical analysis of the sample porosity. While the obtained B0 is in excellent agreement with the earlier high‐pressure compression measurements, the G0 value is 70% higher than the previous estimate. Since both G0 and hardness of the dense c‐Zr3N4 exceed those of γ‐Si3N4, c‐Zr3N4 vies for the rank of the third hardest material after diamond and cubic BN. Our results also support the suggestion that shear modulus is a robust predictor of hardness. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
135.
Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum‐mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ? A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H‐bonds) and the N2H···HC2 dihydrogen bond (DH‐bond) (0.68 kcal·mol?1), whereas the A*·G* base mispair—by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H‐bonds (0.42 kcal·mol?1). The N2H···HC2 DH‐bond smoothly and without bifurcation transforms into the C2H···N2 H‐bond at the IRC = ?10.07 Bohr in the course of the A·G ? A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H‐bonds, it was observed that the N6H···O6 H‐bond is anticooperative to the two others—N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H‐bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10?14 s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low‐frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be considered as a source of the mutagenic tautomers of the DNA bases, as the A·G base mispair dissociates during DNA replication exceptionally into the A and G monomers in the canonical tautomeric form. © 2013 Wiley Periodicals, Inc.  相似文献   
136.
A series of strained Ru(II) complexes were studied for potential anticancer activity in hypoxic tissues. The complexes were constructed with methylated ligands that were photolabile and an imidizo[4,5-f][1,10]phenanthroline ligand that contained an appended aromatic group to potentially allow for contributions of ligand-centered excited states. A systematic variation of the size and energy of the aromatic group was performed using systems containing 1–4 fused rings, and the photochemical and photobiological behaviors of all complexes were assessed. The structure and nature of the aromatic group had a subtle impact on photochemistry, altering environmental sensitivity, and had a significant impact on cellular cytotoxicity and photobiology. Up to 5-fold differences in cytotoxicity were observed in the absence of light activation; this rose to 50-fold differences upon exposure to 453 nm light. Most significantly, one complex retained activity under conditions with 1% O2, which is used to induce hypoxic changes. This system exhibited a photocytotoxicity index (PI) of 15, which is in marked contrast to most other Ru(II) complexes, including those designed for O2-independent mechanisms of action.  相似文献   
137.
Fluorescent nucleoside analogues with strong and informative responses to their local environment are in urgent need for DNA research. In this work, the design, synthesis and investigation of a new solvatochromic ratiometric fluorophore compiled from 3‐hydroxychromones (3HCs) and uracil fragments are reported. 3HC dyes are a class of multi‐parametric, environment‐sensitive fluorophores providing a ratiometric response due to the presence of two well‐resolved bands in their emission spectra. The synthesized conjugate demonstrates not only the preservation but also the improvement of these properties. The absorption and fluorescence spectra are shifted to longer wavelengths together with an increase of brightness. Moreover, the two fluorescence bands are better resolved and provide ratiometric responses across a broader range of solvent polarities. To understand the photophysical properties of this new fluorophore, a series of model compounds were synthesized and comparatively investigated. The obtained data indicate that uracil and 3HC fragments of this derivative are coupled into an electronic conjugated system, which on excitation attains strong charge‐transfer character. The developed fluorophore is a prospective label for nucleic acids. Abstract in Ukrainian: .  相似文献   
138.
2‐(4,5‐Dihydropyrazol‐1‐yl)‐thiazol‐4‐ones ( 2–5 ) have been synthesized starting from 3‐phenyl‐5‐aryl‐1‐thiocarbamoyl‐2‐pyrazolines via [2+3]‐cyclization with 2‐bromopropionic acid, maleic anhydride, N‐arylmaleimides, and aroylacrylic acids. The in vitro anticancer activity of 2a , 3a , 4a , 5b , and 5c were tested by the National Cancer Institute. Compounds 4a , 5b , and 5c demonstrated selective inhibition of leukemia cell lines growth at a single concentration (10?5 M). The screening of antiviral activity for a broad panel of viruses revealed that N‐(4‐methoxyphenyl)‐2‐{2‐[5‐(4‐methoxyphenyl)‐3‐phenyl‐4,5‐dihydropyrazol‐1‐yl]‐4‐oxo‐4,5‐dihydrothiazol‐5‐yl}‐acetamide 4a was highly active against Tacaribe TRVL 11 573 virus strain (EC50 = 0.71 μg/mL, selectivity index = 130).  相似文献   
139.
Three-component reactions of 5-aminopyrazoles and salicylic aldehydes with pyruvic acids were studied. The method of tuning of the selectivity of the heterocyclizations allowing to change its direction by variation of the reaction parameters was worked out. The treatment involving pyruvic acid can be selectively directed to the formation to either 3-aryl-10,11-dihydro-4,10-methano-pyrazolo[4,3-c][1,5]benzoxazocine-4-carboxylic acids or 3,6-diarylpyrazolo[3,4-b]pyridine-4-carboxylic acids, while the reaction involving arylpyruvic acid leads only to 7-hydroxy-2,5,6-triaryl-4,5,6,7-tetrahydro-pyrazolo[1,5-a]pyrimidine-7-carboxylic acids. Antimicrobial activity of the compounds obtained was also studied: Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) were found sensitive to the substances tested, however, only in the highest concentration.  相似文献   
140.
It was established that the cytosine·thymine (C·T) mismatched DNA base pair with cis‐oriented N1H glycosidic bonds has propeller‐like structure (|N3C4C4N3| = 38.4°), which is stabilized by three specific intermolecular interactions–two antiparallel N4H…O4 (5.19 kcal mol?1) and N3H…N3 (6.33 kcal mol?1) H‐bonds and a van der Waals (vdW) contact O2…O2 (0.32 kcal mol?1). The C·T base mispair is thermodynamically stable structure (ΔGint = ?1.54 kcal mol?1) and even slightly more stable than the A·T Watson–Crick DNA base pair (ΔGint = ?1.43 kcal mol?1) at the room temperature. It was shown that the C·T ? C*·T* tautomerization via the double proton transfer (DPT) is assisted by the O2…O2 vdW contact along the entire range of the intrinsic reaction coordinate (IRC). The positive value of the Grunenberg's compliance constants (31.186, 30.265, and 22.166 Å/mdyn for the C·T, C*·T*, and TSC·T ? C*·T*, respectively) proves that the O2…O2 vdW contact is a stabilizing interaction. Based on the sweeps of the H‐bond energies, it was found that the N4H…O4/O4H…N4, and N3H…N3 H‐bonds in the C·T and C*·T* base pairs are anticooperative and weaken each other, whereas the middle N3H…N3 H‐bond and the O2…O2 vdW contact are cooperative and mutually reinforce each other. It was found that the tautomerization of the C·T base mispair through the DPT is concerted and asynchronous reaction that proceeds via the TSC·T ? C*·T* stabilized by the loosened N4? H? O4 covalent bridge, N3H…N3 H‐bond (9.67 kcal mol?1) and O2…O2 vdW contact (0.41 kcal mol?1). The nine key points, describing the evolution of the C·T ? C*·T* tautomerization via the DPT, were detected and completely investigated along the IRC. The C*·T* mispair was revealed to be the dynamically unstable structure with a lifetime 2.13·× 10?13 s. In this case, as for the A·T Watson–Crick DNA base pair, activates the mechanism of the quantum protection of the C·T DNA base mispair from its spontaneous mutagenic tautomerization through the DPT. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号