首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   812篇
  免费   27篇
  国内免费   2篇
化学   568篇
晶体学   2篇
力学   13篇
数学   73篇
物理学   185篇
  2021年   5篇
  2020年   16篇
  2019年   11篇
  2018年   9篇
  2017年   12篇
  2016年   19篇
  2015年   19篇
  2014年   19篇
  2013年   37篇
  2012年   38篇
  2011年   49篇
  2010年   22篇
  2009年   10篇
  2008年   44篇
  2007年   60篇
  2006年   45篇
  2005年   37篇
  2004年   21篇
  2003年   21篇
  2002年   25篇
  2001年   15篇
  2000年   25篇
  1999年   10篇
  1998年   5篇
  1997年   6篇
  1996年   12篇
  1995年   12篇
  1994年   14篇
  1993年   8篇
  1992年   11篇
  1991年   13篇
  1990年   5篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   12篇
  1984年   9篇
  1983年   6篇
  1982年   11篇
  1981年   9篇
  1980年   10篇
  1979年   7篇
  1978年   6篇
  1977年   14篇
  1976年   8篇
  1975年   15篇
  1974年   7篇
  1973年   9篇
  1972年   6篇
排序方式: 共有841条查询结果,搜索用时 0 毫秒
61.
The zeta-potentials of silica, copper, platinum and gold particles have been measured as a function of pH. The isoelectric points were found to be at pH 3.0, 5.8, 3.0 and 3.5, respectively. In the pH range 3.0 to 5.8 copper and silica particles are oppositely charged and accordingly the coating of silica with copper particles could be demonstrated. In the case of gold and platinum the sign of the charge is such that direct adhesion to silica particles cannot be expected and this was also demonstrated in the case of platinum.  相似文献   
62.
63.
Thermochemical data calculated using ab initio molecular orbital theory are reported for 16 BxNxHy compounds with x = 2, 3 and y > or = 2x. Accurate gas-phase heats of formation were obtained using coupled cluster with single and double excitations and perturbative triples (CCSD(T)) valence electron calculations extrapolated to the complete basis set (CBS) limit with additional corrections including core/valence, scalar relativistic, and spin-orbit corrections to predict the atomization energies and scaled harmonic frequencies to correct for zero point and thermal energies and estimate entropies. Computationally cheaper calculations were also performed using the G3MP2 and G3B3 variants of the Gaussian 03 method, as well as density functional theory (DFT) using the B3LYP functional. The G3MP2 heats of formation are too positive by up to approximately 6 kcal/mol as compared with CCSD(T)/CBS values. The more expensive G3B3 method predicts heats of formation that are too negative as compared with the CCSD(T)/CBS values by up to 3-4 kcal/mol. DFT using the B3LYP functional and 6-311+G** basis set predict isodesmic reaction energies to within a few kcal/mol compared with the CCSD(T)/CBS method so isodesmic reactions involving BN compounds and the analogous hydrocarbons can be used to estimate heats of formation. Heats of formation of c-B3N3H12 and c-B3N3H6 are -95.5 and -115.5 kcal/mol at 298 K, respectively, using our best calculated CCSD(T)/CBS approach. The experimental value for c-B3N3H6 appears to be approximately 7 kcal/mol too negative. Enthalpies, entropies, and free energies are calculated for many dehydrocoupling and dehydrogenation reactions that convert BNH6 to alicyclic and cyclic oligomers and H2(g). Generally, the reactions are highly exothermic and exergonic as well because of the release of 1 or more equivalents of H2(g). For c-B3N3H12 and c-B3N3H6, available experimental data for sublimation and vaporization lead to estimates of their condensed phase 298 K heats of formation: DeltaHf degrees [c-B3N3H12(s)] = -124 kcal/mol and DeltaHf degrees [c-B3N3H6(l)] = -123 kcal/mol. The reaction thermochemistries for the dehydrocoupling of BNH6(s) to c-B3N3H12(s) and the dehydrogenation of c-B3N3H12(s) to c-B3N3H6(l) are much less exothermic compared with the gas-phase reactions due to intermolecular forces which decrease in the order BNH6 > cyclo-B3N3H12 > cyclo-B3N3H6. The condensed phase reaction free energies are less negative compared with the gas-phase reactions but are still too favorable for BNH6 to be regenerated from either c-B3N3H12 or c-B3N3H6 by just an overpressure of H2.  相似文献   
64.
The design and synthesis of flavonoid analogues as combinatorial scaffolds is reported. Using commercially available materials, we synthesized chalcones with fluoro and carboxy groups. Nitration of these compounds generated highly functionalized flavonoid scaffolds with an o-fluoronitrobenzene template. Subsequent cyclizations of these chalcones resulted in the formation of several flavone and flavonone scaffolds. One of the flavonones was chosen as the scaffold to synthesize flavonoid derivatives on the solid phase. A series of flavonoid derivatives were obtained in high yields, which demonstrates that these highly functionalized scaffolds can be used in the synthesis of natural product-based combinatorial libraries for drug discovery.  相似文献   
65.
The effects of the carbon backbone chain length on the EPR spectra of linear perfluoro-n-alkanes (PFAs) γ-irradiated at 77 K was studied for the short chain n-C6F14, n-C8F16, n-C12F26, and n-C16F34 molecules as well as the polymer polytetrafluoroethylene (PTFE). The experimental data show that the processes occurring during radiolysis of perfluoro-n-alkanes and polytetrafluoroethylene are very similar. EPR spectra of irradiated perfluoro-n-alkanes at low radiation dose show superimposed signals from three radicals: -F2CCFCF2-, -CF2CF2 and F3C. The signal intensity decreases with perfluoro-n-alkanes chain length. At doses above 2.0 MGy, a constant increase in concentration of the radicals -F2CCFCF2- and -CF2CF2 is observed with decreasing chain length. The concentration of these radicals formed during radiolysis of PFA is described by the ratio: [-CF2CF2]/[-F2CCFCF2-] ≈3/(n − 2), where n is the number of carbon atoms in the linear perfluoroalkanes. Density functional theory was used to calculate the structures of the radicals and C-F bond energies in model perfluoro-n-alkanes as well as the EPR spectra of the associated radicals. This data is used to provide further insight into the radiation stability of PTFE. Four topographical structures of polytetrafluoroethylene, one amorphous and three crystalline, were identified by thermomechanical analysis. In the crystal phase, γ-irradiation results in their transformation to the amorphous form. The helical structure of individual perfluroalkanes readily distorts on removal of a fluorine and this will have an impact on the overall structure of the material. Such structural reorganization can lead to loss of the mechanical stability of polytetrafluoroethylene.  相似文献   
66.
A systematic study was conducted on the Cr catalysed tri- and tetramerisation of ethylene using bis(diphenylphosphino)amine ligands with N-aryl functionality. This study revealed that the oligomerisation reaction product selectivity is primarily dependent on the structure and size of the N-aryl groups.

Addition of sufficient steric bulk to the N-phenyl group via ortho-alkyl substitution increased the combined 1-hexene and 1-octene selectivity (overall alpha selectivity) to above 82% at an overall 1-octene selectivity of 56%. The introduction of a single carbon spacer between the N-atom and the aryl-moiety, as well as the addition of branching on this carbon, resulted in further selectivity improvements, achieving an overall 1-octene selectivity of 64% and an overall alpha selectivity of 84%. This was obtained at catalyst productivities in excess of 1,000,000 g/g Cr/h.  相似文献   

67.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for KrF+, KrF-, KrF2, KrF3+, KrF4, KrF5+, and KrF6 from coupled-cluster theory (CCSD(T)) calculations with effective core potential correlation-consistent basis sets for krypton. To achieve near chemical accuracy (+/-1 kcal/mol), three corrections were added to the complete basis set binding energies based on frozen core coupled-cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, and a correction for first-order atomic spin-orbit effects. Vibrational zero point energies were computed at the coupled-cluster level of theory. The calculated value for the heat of formation of KrF2 is in excellent agreement with the experimental value. Contrary to the analogous xenon fluorides, KrF2, KrF4, and KrF6 are predicted to be thermodynamically unstable with respect to loss of F2. An analysis of the energetics of KrF4 and KrF6 with respect to fluorine atom loss together with calculations of the transition states for the intramolecular loss of F2 show that fluorine atom loss is the limiting factor determining the kinetic stabilities of these molecules. Whereas KrF4 possesses a marginal energy barrier of 10 kcal/mol toward fluorine atom loss and might be stable at moderately low temperatures, the corresponding barrier in KrF6 is only 0.9 kcal/mol, suggesting that it could exist only at very low temperatures. Although the simultaneous reactions of either two or four fluorine atoms with KrF2 to give KrF4 or KrF6, respectively, are exothermic, they do not represent feasible synthetic approaches because the attack of the fluorine ligands of KrF2 by the fluorine atoms, resulting in F2 abstraction, is thermodynamically favored over oxidative fluorination of the krypton central atom. Therefore, KrF6 could exist only at very low temperatures, and even the preparation of KrF4 will be extremely difficult.  相似文献   
68.
69.
Coupled-cluster calculations through noniterative triple excitations were used to compute optimized structures, atomization energies at 0 K, and heats of formation at 0 and 298 K for NH2O, HNOH, NH2O-, NH2OH+, NH3OH+, HNO-, and HON. These molecules are important in the gas-phase oxidation of NH3, as well as its solution-phase chemistry. The O-H, N-H, and N-O bond energies of these molecules are given and compared. The N-H and O-H bond energies are quite low, and, for NH2OH, the O-H bond is weaker than the N-H bond (by 7.5 kcal/mol). The energetics for a variety of ionic chemical processes in the gas phase, including the electron affinities of NH2O and HNO, the proton affinities of NH2O and NH2OH, and the acidities of NH2OH and NH2O, are given. The compounds are weak bases and weak acids in the gas phase. Solvation effects were included at the PCM and COSMO levels. The COSMO model gave better values than the PCM model. The relative values for pKa for NH2O and NH2OH are in good agreement with the experimental values, showing both compounds to be very strong bases in aqueous solution with NH2OH being the stronger base by 1.8 pK units at the COSMO level, compared to the experimental pK difference of 1.1+/-0.3 pK units. We predict that NH2OH+ will not be formed in aqueous solution, because it is a very strong acid. Based on the known acidity of NH3OH+, we predict pKa(NH2OH+)=-5.4 at the COSMO level, which is in good agreement with the experimental estimate of pKa(NH2OH+)=-7+/-2.  相似文献   
70.
A solid-phase synthetic route to quinoxaline, thiazine, and oxazine analogs is described. N-Alloc-3-amino-3-(2,4-difluoro-5-nitrophenyl)propanoic acid was tethered to Rink resin via its carboxylic acid group. The 4-arylfluorine was displaced with a primary amine, alcohol, or thiol to create, respectively, a resin bound aniline, phenol, or thiophenol derivative with one diversity element and one single atom (e.g., N, S, or O) diversity point. A fused heterocyclic system was subsequently created via a benzyne heterocyclization initiated by dehydrofluorination with strong base. Acid treatment released the desired products in high yield and moderate purity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号