首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3192篇
  免费   123篇
  国内免费   20篇
化学   2491篇
晶体学   7篇
力学   54篇
数学   466篇
物理学   317篇
  2023年   19篇
  2022年   26篇
  2021年   27篇
  2020年   71篇
  2019年   49篇
  2018年   29篇
  2017年   41篇
  2016年   74篇
  2015年   101篇
  2014年   105篇
  2013年   176篇
  2012年   212篇
  2011年   223篇
  2010年   161篇
  2009年   120篇
  2008年   220篇
  2007年   212篇
  2006年   218篇
  2005年   200篇
  2004年   152篇
  2003年   130篇
  2002年   153篇
  2001年   68篇
  2000年   53篇
  1999年   59篇
  1998年   45篇
  1997年   52篇
  1996年   59篇
  1995年   44篇
  1994年   31篇
  1993年   23篇
  1992年   22篇
  1991年   11篇
  1990年   17篇
  1989年   14篇
  1988年   4篇
  1987年   11篇
  1986年   9篇
  1985年   12篇
  1983年   5篇
  1982年   12篇
  1981年   8篇
  1979年   5篇
  1978年   6篇
  1977年   7篇
  1975年   3篇
  1974年   6篇
  1973年   3篇
  1972年   5篇
  1971年   5篇
排序方式: 共有3335条查询结果,搜索用时 15 毫秒
41.
A short summary of the present status of prompt particle decays in the mass region is presented. It includes recent results from a GAMMASPHERE experiment, which aimed at the combined high-resolution spectroscopy of light charged particles and -rays to allow for more detailed studies of known decays and the identification of new cases of discrete prompt proton and -particle emission from highly and superdeformed states.Received: 10 October 2002, Published online: 17 February 2004PACS: 23.50. + z Decay by proton emission - 23.60. + e decay - 27.40. + z - 27.50. + e   相似文献   
42.
Nonparametric density estimation aims to determine the sparsest model that explains a given set of empirical data and which uses as few assumptions as possible. Many of the currently existing methods do not provide a sparse solution to the problem and rely on asymptotic approximations. In this paper we describe a framework for density estimation which uses information-theoretic measures of model complexity with the aim of constructing a sparse density estimator that does not rely on large sample approximations. The effectiveness of the approach is demonstrated through an application to some well-known density estimation test cases.  相似文献   
43.
The hard X‐ray beamline BL8 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA is described. This beamline is dedicated to X‐ray studies in the spectral range from ~1 keV to ~25 keV photon energy. The monochromator as well as the other optical components of the beamline are optimized accordingly. The endstation comprises a six‐axis diffractometer that is capable of carrying heavy loads related to non‐ambient sample environments such as, for example, ultrahigh‐vacuum systems, high‐pressure cells or liquid‐helium cryostats. X‐ray absorption spectra from several reference compounds illustrate the performance. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments have been performed. The results show that high‐quality EXAFS data can be obtained in the quick‐scanning EXAFS mode within a few seconds of acquisition time, enabling time‐resolved in situ experiments using standard beamline equipment that is permanently available. The performance of the new beamline, especially in terms of the photon flux and energy resolution, is competitive with other insertion‐device beamlines worldwide, and several sophisticated experiments including surface‐sensitive EXAFS experiments are feasible.  相似文献   
44.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   
45.
The Steiner Traveling Salesman Problem (STSP) is a variant of the TSP that is particularly suitable when routing on real-life road networks. The standard integer programming formulations of both the TSP and STSP have an exponential number of constraints. On the other hand, several compact formulations of the TSP, i.e., formulations of polynomial size, are known. In this paper, we adapt some of them to the STSP, and compare them both theoretically and computationally. It turns out that, just by putting the best of the formulations into the CPLEX branch-and-bound solver, one can solve instances with over 200 nodes. We also briefly discuss the adaptation of our formulations to some related problems.  相似文献   
46.
47.
Jalas D  Petrov A  Krause M  Hampe J  Eich M 《Optics letters》2010,35(20):3438-3440
We present the theoretical concept of an optical isolator based on resonance splitting in a silicon ring resonator covered with a magneto-optical polymer cladding. For this task, a perturbation method is derived for the modes in the cylindrical coordinate system. A polymer magneto-optical cladding causing a 0.01 amplitude of the off-diagonal element of the dielectric tensor is assumed. It is shown that the derived resonance splitting of the clockwise and counterclockwise modes increases for smaller ring radii. For the ring with a radius of approximately 1.5μm, a 29GHz splitting is demonstrated. An integrated optical isolator with a 10μm geometrical footprint is proposed based on a critically coupled ring resonator.  相似文献   
48.
Let Ω?RN be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ?Ω. We show that the solution to the linear first-order system:(1)?ζ=Gζ,ζ|Γ=0, vanishes if GL1(Ω;R(N×N)×N) and ζW1,1(Ω;RN). In particular, square-integrable solutions ζ of (1) with GL1L2(Ω;R(N×N)×N) vanish. As a consequence, we prove that:???:C°(Ω,Γ;R3)[0,),u?6sym(?uP?1)6L2(Ω) is a norm if PL(Ω;R3×3) with CurlPLp(Ω;R3×3), CurlP?1Lq(Ω;R3×3) for some p,q>1 with 1/p+1/q=1 as well as detP?c+>0. We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ΦH1(Ω;R3), Ω?R3, satisfy sym(?Φ??Ψ)=0 for some ΨW1,(Ω;R3)H2(Ω;R3) with det?Ψ?c+>0. Then there exists a constant translation vector aR3 and a constant skew-symmetric matrix Aso(3), such that Φ=AΨ+a.  相似文献   
49.
The complexes [K(H2O)2LnL2] (Ln = La or Nd; L = 1,2‐benzenedisulfonate) and [K(H2O)Yb(H2O)4L2] were initially isolated fortuitously from attempts to prepare the corresponding Ln2L3 complexes from Ln2O3 and H2L in water. Indeed the bulk products from these reactions have the composition Ln2L3. Subsequently, deliberate syntheses by reacting equimolar amounts of Ln2L3 with K2L in water gave the complexes in good yield. X‐ray crystal structures of [K(H2O)2LnL2] (Ln = La or Nd) showed the complexes to be isostructural with a two dimensional polymeric network structure in which LnL2 units are linked into chains crosslinked by potassium ions. Each Ln is nine coordinate with solely sulfonate oxygen donor atoms. Between adjacent lanthanoid ions there are three different types of sulfonate bridges and two examples of each. Most noteworthy is highly unsymmetrical bridging through μ‐η2‐sulfonate oxygen atoms. Consequently, one Ln–O bond is ca. 0.5 Å longer than the other eight. Potassium is nine‐coordinate with seven sulfonate oxygen atoms and two aqua ligands, and surprisingly <K–O(sulfonate)> is much longer than <K–O(H2O)>. Pairs of potassium ions are linked by two μ‐η2‐sulfonate oxygen atoms, which are unsymmetrically bridging. The structure of [K(H2O)Yb(H2O)4L2] comprises discrete tetranuclear units containing two independent ytterbium ions, each coordinated by four water molecules and two chelating (via seven membered rings) disulfonate ligands, and two potassium ions, each coordinated by six sulfonate oxygen atoms and a water molecule. For each potassium, four of the coordinated sulfonate oxygen atoms are from sulfonate ligands bonded to one ytterbium atom and two from sulfonate ligands attached to the other ytterbium atom. In contrast to the Nd and La complexes, <K–O(sulfonate)> is shorter than <K–O(H2O)>.  相似文献   
50.
Photochromic ligands have been used to control a variety of biological functions, especially in neural systems. Recently, much effort has been invested in the photocontrol of ion channels and G‐protein coupled receptors found in the synapse. Herein, we describe the expansion of our photopharmacological approach toward the remote control of an enzyme. Building on hallmark studies dating from the late 1960s, we evaluated photochromic inhibitors of one of the most important enzymes in synaptic transmission, acetylcholinesterase (AChE). Using structure‐based design, we synthesized several azobenzene analogues of the well‐known AChE inhibitor tacrine (THA) and determined their effects on enzymatic activity. One of our compounds, AzoTHA, is a reversible photochromic blocker of AChE in vitro and ex vivo with high affinity and fast kinetics. As such, AzoTHA can be used to control synaptic transmission on the neuromuscular endplate based on the light‐dependent clearance of a neurotransmitter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号