首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3176篇
  免费   139篇
  国内免费   20篇
化学   2491篇
晶体学   7篇
力学   54篇
数学   466篇
物理学   317篇
  2023年   15篇
  2022年   22篇
  2021年   27篇
  2020年   71篇
  2019年   49篇
  2018年   29篇
  2017年   41篇
  2016年   74篇
  2015年   101篇
  2014年   105篇
  2013年   177篇
  2012年   212篇
  2011年   224篇
  2010年   161篇
  2009年   120篇
  2008年   220篇
  2007年   212篇
  2006年   218篇
  2005年   201篇
  2004年   153篇
  2003年   130篇
  2002年   153篇
  2001年   69篇
  2000年   53篇
  1999年   59篇
  1998年   45篇
  1997年   52篇
  1996年   58篇
  1995年   44篇
  1994年   33篇
  1993年   23篇
  1992年   22篇
  1991年   11篇
  1990年   17篇
  1989年   14篇
  1988年   4篇
  1987年   11篇
  1986年   10篇
  1985年   12篇
  1983年   5篇
  1982年   12篇
  1981年   8篇
  1979年   5篇
  1978年   6篇
  1977年   7篇
  1975年   3篇
  1974年   6篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
排序方式: 共有3335条查询结果,搜索用时 453 毫秒
301.
302.
303.
A water soluble naphthalenebisimide derivative (NBI) was synthesized and probed to individualize, suspend, and stabilize single wall carbon nanotubes (SWCNTs). Besides a comprehensive photophysical and electrochemical characterization of NBI, stable suspensions of SWCNTs were realized in buffered D2O. Overall, the dispersion efficiency of the NBI surfactant was determined by comparison with naphthalene based references. Successful individualization of SWCNTs was corroborated in several microscopic assays. In addition, emission spectroscopy points to the strong quenching of SWCNT centered band gap emission, when NBIs are immobilized onto SWCNTs. The origin of the quenching was found to be strong electronic communication, which leads to charge separation between NBIs and photoexcited SWCNTs, and, which yields reduced NBIs as well oxidized SWCNTs. Notably, electrochemical considerations revealed that the energy content of these charge separated states is one of the highest reported for SWCNT based electron donor–acceptor hybrids so far.  相似文献   
304.
A new set of [Cu(phen)2]+ based rotaxanes, featuring [60]-fullerene as an electron acceptor and a variety of electron donating moieties, namely zinc porphyrin (ZnP), zinc phthalocyanine (ZnPc) and ferrocene (Fc), has been synthesized and fully characterized with respect to electrochemical and photophysical properties. The assembly of the rotaxanes has been achieved using a slight variation of our previously reported synthetic strategy that combines the Cu(i)-catalyzed azide–alkyne cycloaddition reaction (the “click” or CuAAC reaction) with Sauvage''s metal-template protocol. To underline our results, complementary model rotaxanes and catenanes have been prepared using the same strategy and their electrochemistry and photo-induced processes have been investigated. Insights into excited state interactions have been afforded from steady state and time resolved emission spectroscopy as well as transient absorption spectroscopy. It has been found that photo-excitation of the present rotaxanes triggers a cascade of multi-step energy and electron transfer events that ultimately leads to remarkably long-lived charge separated states featuring one-electron reduced C60 radical anion (C60˙) and either one-electron oxidized porphyrin (ZnP˙+) or one-electron oxidized ferrocene (Fc˙+) with lifetimes up to 61 microseconds. In addition, shorter-lived charge separated states involving one-electron oxidized copper complexes ([Cu(phen)2]2+ (τ < 100 ns)), one-electron oxidized zinc phthalocyanine (ZnPc˙+; τ = 380–560 ns), or ZnP˙+ (τ = 2.3–8.4 μs), and C60˙ have been identified as intermediates during the sequence. Detailed energy diagrams illustrate the sequence and rate constants of the photophysical events occurring with the mechanically-linked chromophores. This work pioneers the exploration of mechanically-linked systems as platforms to position three distinct chromophores, which are able to absorb light over a very wide range of the visible region, triggering a cascade of short-range energy and electron transfer processes to afford long-lived charge separated states.  相似文献   
305.
Two hexagonal series of lanthanoid(III) oxide fluoride selenides with similar structure types can be obtained by the reaction of the components MF3, M2O3, M, and Se in sealed niobium tubes at 850 °C using CsI as fluxing agent. The compounds with the lighter and larger representatives (M = La – Nd) occur with the formula M6O2F8Se3, whereas with the heavier and smaller ones (M = Nd, Sm, Gd – Ho) their composition is M2OF2Se. For both systems single‐crystal determinations were used in all cases. The compounds crystallize in the hexagonal crystal system (space group: P63/m) with lattice parameters of a = 1394–1331 pm and c = 403–372 pm (Z = 2 for M6O2F8Se3 and Z = 6 for M2OF2Se). The (M1)3+ cations show different square antiprismatic coordination spheres with or without an extra capping fluoride anion. All (M2)3+ cations exhibit a ninefold coordination environment shaped as tricapped trigonal prism. In both structure types the Se2– anions are sixfold coordinated as trigonal prisms of M3+ cations, being first condensed by edges to generate trimeric units and then via faces to form strands running along [001]. The light anions reside either in threefold triangular or in fourfold tetrahedral cationic coordination. For charge compensation, both structures have to contain a certain amount of oxide besides fluoride anions. Since F and O2– can not be distinguished by X‐ray diffraction, bond‐valence calculations were used to address the problem of their adjunction to the available crystallographic sites.  相似文献   
306.
307.
This work presents a detailed study of the photo-induced spin-state dynamics of the photochromic iron(II) complex 1, where the metal ion is in the field of a tripodal hexa-imine ligand with protolysable phenol groups. The nature of the complex’s ground state has been identified as a spin singlet by 1H NMR and steady-state UV/vis spectroscopies, and its distorted octahedral structure was analyzed via crystal structure determination. Sub-picosecond and nanosecond time-resolved laser flash photolysis experiments identify the long-lived quintet state of 1 as the selective product of photoexcitation in the UV/vis spectral region. Thermal barriers of spin-state interconversion as a function of solvent and added base are derived from temperature-dependent rates of transient decay. Ground-state recovery is found to be significantly affected by the solvent and is strongly enhanced, in particular, by base-driven solvolysis of the ligand’s phenol groups. Partial spontaneous deprotonation of the phenolic hydroxyl groups of 1 seems to prevail on metal oxide surfaces, i.e. on alumina. Composite materials, like 1 at Al2O3, that retain the characteristic spectral features of the parent iron(II) complex can be readily obtained by wet impregnation of hydrous alumina with solutions of 1.  相似文献   
308.
Despite various studies on the polymerization of poly(p‐phenylene vinylene) (PPV) through different precursor routes, detailed mechanistic knowledge on the individual reaction steps and intermediates is still incomplete. The present study aims to gain more insight into the radical polymerization of PPV through the Gilch route. The initial steps of the polymerization involve the formation of a p‐quinodimethane intermediate, which spontaneously self‐initiates through a dimerization process leading to the formation of diradical species; chain propagation ensues on both sides of the diradical or chain termination occurs by the formation of side products, such as [2.2]paracyclophanes. Furthermore, different p‐quinodimethane systems were assessed with respect to the size of their aromatic core as well as the presence of heteroatoms in/on the conjugated system. The nature of the aromatic core and the specific substituents alter the electronic structure of the p‐quinodimethane monomers, affecting the mechanism of polymerization. The diradical character of the monomers has been investigated with several advanced methodologies, such as spin‐projected UHF, CASSCF, CASPT2, and DMRG calculations. It was shown that larger aromatic cores led to a higher diradical character in the monomers, which in turn is proposed to cause rapid initiation.  相似文献   
309.
A visible light‐induced photocatalytic dehydrogenation/6π‐cyclization/oxidation cascade converts 1‐(nitromethyl)‐2‐aryl‐1,2,3,4‐tetrahydroisoquinolines into novel 12‐nitro‐substituted tetracyclic indolo[2,1‐a]isoquinoline derivatives. Various photocatalysts promote the reaction in the presence of air and a base, the most efficient being 1‐aminoanthraquinone in combination with K3PO4. Further, the 12‐nitroindoloisoquinoline products can be accessed directly from C1‐unfunctionalized 2‐aryl‐1,2,3,4‐tetrahydroisoquinolines by extending the one‐pot protocol with a foregoing photocatalytic cross‐dehydrogenative coupling reaction, resulting in a quadruple cascade transformation.  相似文献   
310.
Secondary metabolome mining efforts in the myxobacterial multiproducer of natural products, Chondromyces crocatus Cm c5, resulted in the isolation and structure elucidation of crocagins, which are novel polycyclic peptides containing a tetrahydropyrrolo[2,3-b]indole core. The gene cluster was identified through an approach combining genome analysis, targeted gene inactivation in the producer, and in vitro experiments. Based on our findings, we developed a biosynthetic scheme for crocagin biosynthesis. These natural products are formed from the three C-terminal amino acids of a precursor peptide and thus belong to a novel class of ribosomally synthesized and post-translationally modified peptides (RiPPs). We demonstrate that crocagin A binds to the carbon storage regulator protein CsrA, thereby inhibiting the ability of CsrA to bind to its cognate RNA target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号