首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42720篇
  免费   8362篇
  国内免费   1401篇
化学   45150篇
晶体学   368篇
力学   608篇
数学   2595篇
物理学   3762篇
  2023年   73篇
  2022年   278篇
  2021年   411篇
  2020年   1399篇
  2019年   2774篇
  2018年   1197篇
  2017年   798篇
  2016年   3652篇
  2015年   3721篇
  2014年   3701篇
  2013年   4437篇
  2012年   3358篇
  2011年   2641篇
  2010年   3152篇
  2009年   3137篇
  2008年   2762篇
  2007年   2069篇
  2006年   1723篇
  2005年   1840篇
  2004年   1586篇
  2003年   1445篇
  2002年   2110篇
  2001年   1459篇
  2000年   1364篇
  1999年   426篇
  1998年   101篇
  1997年   84篇
  1996年   61篇
  1995年   56篇
  1994年   67篇
  1993年   68篇
  1992年   65篇
  1991年   41篇
  1990年   34篇
  1989年   30篇
  1988年   31篇
  1987年   21篇
  1986年   19篇
  1985年   25篇
  1984年   27篇
  1983年   26篇
  1982年   19篇
  1981年   28篇
  1980年   22篇
  1979年   16篇
  1978年   19篇
  1977年   17篇
  1976年   19篇
  1975年   13篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
982.
983.
984.
The acoustic perturbation equations (APE) are suitable to predict aerodynamic noise in the presence of a non‐uniform mean flow. As for any hybrid computational aeroacoustics approach, a first computational fluid dynamics simulation is carried out from which the mean flow characteristics and acoustic sources are obtained. In a second step, the APE are solved to get the acoustic pressure and particle velocity fields. However, resorting to the finite element method (FEM) for that purpose is not straightforward. Whereas mixed finite elements satisfying an appropriate inf–sup compatibility condition can be built in the case of no mean flow, that is, for the standard wave equation in mixed form, these are difficult to implement and their good performance is yet to be checked for more complex wave operators. As a consequence, strong simplifying assumptions are usually considered when solving the APE with FEM. It is possible to avoid them by resorting to stabilized formulations. In this work, a residual‐based stabilized FEM is presented for the APE at low Mach numbers, which allows one to deal with the APE convective and reaction terms in its full extent. The key of the approach resides in the design of the matrix of stabilization parameters. The performance of the formulation and the contributions of the different terms in the equations are tested for an acoustic pulse propagating in sheared‐solenoidal mean flow, and for the aeolian tone generated by flow past a two‐dimensional cylinder. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
985.
In this article, we present a higher‐order finite volume method with a ‘Modified Implicit Pressure Explicit Saturation’ (MIMPES) formulation to model the 2D incompressible and immiscible two‐phase flow of oil and water in heterogeneous and anisotropic porous media. We used a median‐dual vertex‐centered finite volume method with an edge‐based data structure to discretize both, the elliptic pressure and the hyperbolic saturation equations. In the classical IMPES approach, first, the pressure equation is solved implicitly from an initial saturation distribution; then, the velocity field is computed explicitly from the pressure field, and finally, the saturation equation is solved explicitly. This saturation field is then used to re‐compute the pressure field, and the process follows until the end of the simulation is reached. Because of the explicit solution of the saturation equation, severe time restrictions are imposed on the simulation. In order to circumvent this problem, an edge‐based implementation of the MIMPES method of Hurtado and co‐workers was developed. In the MIMPES approach, the pressure equation is solved, and the velocity field is computed less frequently than the saturation field, using the fact that, usually, the velocity field varies slowly throughout the simulation. The solution of the pressure equation is performed using a modification of Crumpton's two‐step approach, which was designed to handle material discontinuity properly. The saturation equation is solved explicitly using an edge‐based implementation of a modified second‐order monotonic upstream scheme for conservation laws type method. Some examples are presented in order to validate the proposed formulation. Our results match quite well with others found in literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
986.
987.
988.
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号