首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   7篇
化学   145篇
晶体学   5篇
力学   2篇
数学   24篇
物理学   24篇
  2023年   2篇
  2022年   1篇
  2020年   3篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   11篇
  2012年   9篇
  2011年   12篇
  2010年   10篇
  2009年   6篇
  2008年   11篇
  2007年   14篇
  2006年   17篇
  2005年   17篇
  2004年   10篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1965年   1篇
  1956年   1篇
  1951年   1篇
  1941年   1篇
  1892年   1篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
191.
A norbornene-mediated palladium-catalyzed sequence is described in which two alkyl-aryl bonds and one alkenyl-aryl bond are formed in one pot with use of microwave irradiation. A variety of symmetrical and unsymmetrical oxygen-, nitrogen-, silicon-, and sulfur-containing tricyclic heterocycles were synthesized from a Heck acceptor and an aryl iodide containing two tethered alkyl halides. This approach was further applied to the synthesis of a tricyclic mescaline analogue.  相似文献   
192.
Given the output of a data source taking values in a finite alphabet, we wish to estimate change-points, that is times when the statistical properties of the source change. Motivated by ideas of match lengths in information theory, we introduce a novel non-parametric estimator which we call CRECHE (CRossings Enumeration CHange Estimator). We present simulation evidence that this estimator performs well, both for simulated sources and for real data formed by concatenating text sources. For example, we show that we can accurately estimate the point at which a source changes from a Markov chain to an IID source with the same stationary distribution. Our estimator requires no assumptions about the form of the source distribution, and avoids the need to estimate its probabilities. Further, establishing a fluid limit and using martingale arguments.  相似文献   
193.
This work proposes a long range ultrasonic transducers technique in conjunction with an active incremental Support Vector Machine (SVM) classification approach that is used for real-time pipeline defects prediction and condition monitoring. Oil and gas pipeline defects are detected using various techniques. One of the most prevalent techniques is the use of “smart pigs” to travel along the pipeline and detect defects using various types of sensors such as magnetic sensors and eddy-current sensors. A critical short coming of “smart pigs” is the inability to monitor continuously and predict the onset of defects. The emergence of permanently installed long range ultrasonics transducers systems enable continuous monitoring to be achieved. The needs for and the challenges of the proposed technique are presented. The experimental results show that the proposed technique achieves comparable classification accuracy as when batch training is used, while the computational time is decreased, using 56 feature data points acquired from a lab-scale pipeline defect generating experimental rig.  相似文献   
194.
Sollier E  Murray C  Maoddi P  Di Carlo D 《Lab on a chip》2011,11(22):3752-3765
Multiple methods of fabrication exist for microfluidic devices, with different advantages depending on the end goal of industrial mass production or rapid prototyping for the research laboratory. Polydimethylsiloxane (PDMS) has been the mainstay for rapid prototyping in the academic microfluidics community, because of its low cost, robustness and straightforward fabrication, which are particularly advantageous in the exploratory stages of research. However, despite its many advantages and its broad use in academic laboratories, its low elastic modulus becomes a significant issue for high pressure operation as it leads to a large alteration of channel geometry. Among other consequences, such deformation makes it difficult to accurately predict the flow rates in complex microfluidic networks, change flow speed quickly for applications in stop-flow lithography, or to have predictable inertial focusing positions for cytometry applications where an accurate alignment of the optical system is critical. Recently, other polymers have been identified as complementary to PDMS, with similar fabrication procedures being characteristic of rapid prototyping but with higher rigidity and better resistance to solvents; Thermoset Polyester (TPE), Polyurethane Methacrylate (PUMA) and Norland Adhesive 81 (NOA81). In this review, we assess these different polymer alternatives to PDMS for rapid prototyping, especially in view of high pressure injections with the specific example of inertial flow conditions. These materials are compared to PDMS, for which magnitudes of deformation and dynamic characteristics are also characterized. We provide a complete and systematic analysis of these materials with side-by-side experiments conducted in our lab that also evaluate other properties, such as biocompatibility, solvent compatibility, and ease of fabrication. We emphasize that these polymer alternatives, TPE, PUMA and NOA, have some considerable strengths for rapid prototyping when bond strength, predictable operation at high pressure, or transitioning to commercialization are considered important for the application.  相似文献   
195.
The ability to detect and isolate rare target cells from heterogeneous samples is in high demand in cell biology research, immunology, tissue engineering and medicine. Techniques allowing label-free cell enrichment or detection are especially important to reduce the complexity and costs towards clinical applications. Single-cell deformability has recently been recognized as a unique label-free biomarker for cell phenotype with implications for assessment of cancer invasiveness. Using a unique combination of fluid dynamic effects in a microfluidic system, we demonstrate high-throughput continuous label-free cell classification and enrichment based on cell size and deformability. The system takes advantage of a balance between deformability-induced and inertial lift forces as cells travel in a microchannel flow. Particles and droplets with varied elasticity and viscosity were found to have separate lateral dynamic equilibrium positions due to this balance of forces. We applied this system to successfully classify various cell types using cell size and deformability as distinguishing markers. Furthermore, using differences in dynamic equilibrium positions, we adapted the system to conduct passive, label-free and continuous cell enrichment based on these markers, enabling off-chip sample collection without significant gene expression changes. The presented method has practical potential for high-throughput deformability measurements and cost-effective cell separation to obtain viable target cells of interest in cancer research, immunology, and regenerative medicine.  相似文献   
196.
Strong-field ionization of nonlinear planar triatomic molecules by a bicircular laser field is analyzed within the improved molecular strong-field approximation. Our calculations include additional interaction between the liberated electrons and atomic or ionic centers of the parent molecular ion. The used bicircular field consists of two counterrotating circularly polarized fields having angular frequencies \(r \omega\) and \(s \omega\), with integer r and s. In the case when the laser-field-polarization plane is parallel to the plane of the considered molecule (example of ozone molecule is analyzed), the corresponding photoelectron spectra are not rotationally symmetric. On the other hand, when these planes are mutually perpendicular, for the \((r\omega ,s\omega )=(\omega ,3\omega )\) bicircular field, the electron spectra satisfy the corresponding rotational symmetries. Analyzing the obtained spectra and the corresponding symmetries, one can extract information about molecular orientation and structure. This technique may also be useful for more complex polyatomic molecules.  相似文献   
197.
Synchrotron radiation based techniques are powerful tools for battery research and allow probing a wide range of length scales, with different depth sensitivities and spatial/temporal resolutions. Operando experiments enable characterization during functioning of the cell and are thus a precious tool to elucidate the reaction mechanisms taking place. In this perspective, the current state of the art for the most relevant techniques (scattering, spectroscopy, and imaging) is discussed together with the bottlenecks to address, either specific for application in the battery field or more generic. The former includes the improvement of cell designs, multi-modal characterization and development of protocols for automated or at least semi-automated data analysis to quickly process the huge amount of data resulting from operando experiments. Given the recent evolution in these areas, accelerated progress is expected in the years to come, which should in turn foster battery performance improvements.

Synchrotron radiation enables probing a wide range of length scales operando, hence being a powerful tool in battery research. Challenges ahead involve cell design (especially for multi-modal approaches) and protocols for automated data analysis.  相似文献   
198.
199.
Results of our studies on polymerization kinetics and tests of copolymerization statistical models of ethylene-norbornene (E-N) copolymers obtained on the basis of microstructures determined by 13C NMR analysis are reported. Ethylene-norbornene (E-N) copolymers were synthesized by catalytic systems composed of racemic isospecific metallocenes, i-Pr[(3Pri-Cp)(Flu)]ZrCl2 or a constrained geometry catalyst (CGC) and methylaluminoxane. Polymerization kinetics revealed that E-N copolymerization is quasi living under standard polymerization conditions. Calculations of the number of active sites and of chain propagation and chain transfer turnover frequencies indicate that the metal is mainly in the Mt-N* state, while the Mt-E* state contributes more to transfer and propagation rates. The first-order and the second-order Markov statistics have been tested by using the complete tetrad distribution obtained from 13C NMR analysis of copolymer microstructures. The root-mean-square deviations between experimental and calculated tetrads demonstrate that penultimate (second-order Markov) effects play a decisive role in E-N copolymerizations. Results show clues for more complex effects depending on the catalyst geometry in copolymers obtained at high N/E feed ratios. Comonomer concentration was shown to have a strong influence on copolymer microstructure and copolymer properties. The copolymer microstructure of alternating isotactic copolymers obtained with i-Pr[(3Pri-Cp)(Flu)]ZrCl2 have been described at pentad level. Second-order Markov statistics better describes also the microstrucure of these copolymers.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号