首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1558篇
  免费   47篇
  国内免费   13篇
化学   831篇
晶体学   13篇
力学   37篇
数学   509篇
物理学   228篇
  2023年   13篇
  2022年   71篇
  2021年   77篇
  2020年   61篇
  2019年   69篇
  2018年   65篇
  2017年   61篇
  2016年   81篇
  2015年   69篇
  2014年   87篇
  2013年   107篇
  2012年   118篇
  2011年   109篇
  2010年   68篇
  2009年   52篇
  2008年   61篇
  2007年   45篇
  2006年   38篇
  2005年   46篇
  2004年   28篇
  2003年   22篇
  2002年   21篇
  2001年   12篇
  2000年   16篇
  1999年   6篇
  1998年   5篇
  1997年   12篇
  1996年   14篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   7篇
  1991年   11篇
  1990年   11篇
  1989年   9篇
  1988年   10篇
  1987年   5篇
  1986年   13篇
  1985年   13篇
  1984年   8篇
  1982年   4篇
  1981年   10篇
  1980年   9篇
  1979年   10篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
  1973年   3篇
  1972年   4篇
排序方式: 共有1618条查询结果,搜索用时 15 毫秒
91.
We address the electronic phase engineering in the impurity-infected functionalized bilayer graphene with hydrogen atoms (H-BLG) subjected to a uniform Zeeman magnetic field, employing the tight-binding model, the Green's function technique, and the Born approximation. In particular, the key point of the present work is focused on the electronic density of states (DOS) in the vicinity of the Fermi energy. By exploiting the perturbative picture, we figure out that how the interaction and/or competition between host electrons, guest electrons, and the magnetic field potential can lead to the phase transition in H-BLG. Furthermore, different configurations of hydrogenation, namely reduced table-like and reduced chair-like, are also considered when impurities are the same and/or different. A comprehensive information on the various configurations provides the semimetallic and gapless semiconducting behaviors for unfunctionalized bilayer graphene and H-BLGs, respectively. Further numerical calculations propose a semimetal-to-metal and gapless semiconductor-to-semimetal phase transition, respectively, when only turning on the magnetic field. Interestingly, the results indicate that the impurity doping alone affects the systems as well, leading to semimetal-to-metal and no phase transition in the pristine system and hydrogenated ones, respectively. However, the combined effect of charged impurity and magnetic field shows that the pristine bilayer graphene is not influenced much as the functionalized ones and phase back transitions appear. Tuning of the electronic phase of H-BLG by using both types of electronic and magnetic perturbations play a decisive role in optical responses.  相似文献   
92.
We discuss the propagation of a short laser pulse in an auto- ionizing (AI) medium with degenerate double Fano model. By solving numerically the coupled equations for atoms and fields we show that by the proper choice of Fano parameters involved in the problem (contrary to the case considered in (E. Paspalakis, N. J. Kylstra, and P. L. Knight, Phys. Rev. A60 (1999)) we have now two Fano asymmetry parameters) one can eliminate almost completely the absorption in the pulse propagation. It means that we have the transparency in the medium. From the connection between population trapping in short pulsed laser field and transparency in the propagation of the laser pulse which has been fixed by Paspalakis et al., Phys. Rev. A60 (1999) we conclude that this proper choice leads to the presence of the population trapping (or the existence of the “dark” states) in the atomic system. Moreover, instead of one value of the laser detuning for which the dark states exist in the case of one AI level, we find numerically two such values in the case of two AI levels.  相似文献   
93.
Spontaneous melting of a perfect crystalline graphene model in 2D space is studied via molecular dynamics simulation. Model containing 104 atoms interacted via long-range bond-order potential (LCBOP) is heated up from 50 to 8,450 K in order to see evolution of various thermodynamic quantities, structural characteristics and occurrence of various structural defects. We find that spontaneous melting of our graphene model in 2D space exhibits a first-order behaviour of the transition from solid 2D graphene sheet into a ring-like structure 2D liquid. Occurrence and clustering of Stone–Wales defects are the first step of melting process followed by breaking of C–C bonds, occurrence/growth of various types of vacancies and multi-membered rings. Unlike that found for melting of a 2D crystal with an isotropic bonding, these defects do not occur homogeneously throughout the system, they have a tendency to aggregate into a region and liquid phase initiates/grows from this region via tearing-like or crack-propagation-like mechanism. Spontaneous melting point of our graphene model occurs at Tm = 7,750 K. The validity of classical nucleation theory and Berezinsky–Kosterlitz–Thouless–Nelson–Halperin–Young (BKTNHY) one for the spontaneous melting of our graphene model in strictly 2D space is discussed.  相似文献   
94.
SpectrallyAdjustablePicosecondDyeLaserPulsesGeneratedwithNanosecondNitrogenLasersNguyenDaiHung;PhamLong;DinhVanTrung;NguyenVa...  相似文献   
95.
We construct a quantum circuit to produce a task-oriented partially entangled state and use it as the quantum channel for controlled joint remote state preparation. Unlike most previous works, where the parameters of the quantum channel are given to the receiver who can accomplish the task only probabilistically by consuming auxiliary resource, operation and measurement, here we give them to the supervisor. Thanks to the knowledge of the task-oriented quantum channel parameters, the supervisor can carry out proper complete projective measurement, which, combined with the feed-forward technique adapted by the preparers, not only much economizes (simplifies) the receiver's resource (operation) but also yields unit total success probability. Notably, such apparent perfection does not depend on the entanglement degree of the shared quantum channel. Our protocol is within the reach of current quantum technologies.  相似文献   
96.
Cu2ZnSnS4 (CZTS) has an optical band gap of 1.4–1.5 eV, which is similar to that of Cu(In,Ga)Se2 (CIGS), and a high absorption coefficient (>104 cm−1) in the visible light region. In previous reports, CIGS thin-film solar cells have been shown to improve the performance of the device since the secondary phase is removed by Potassium cyanide (KCN) etching treatment. Therefore, in this study we applied a KCN etching treatment on CZTS and measured the effects. We confirmed the removal of Cu2−xS via Kelvin probe force microscopy (KPFM) and Raman scattering spectroscopy. The effects of the experiment indicate that we can define with precision the location of the secondary phases, and therefore the control of the secondary phases will be easier and more efficient. Such capabilities could improve the solar cell performance of CZTS thin-films.  相似文献   
97.
The as-deposited WO3 thin films were post-annealed at different temperatures (300 °C and 600 °C) in air to investigate a correlation between crystallinity and switching behavior of WO3 thin films. Associating the results of XRD, FTIR, XPS and FESEM measurements, the annealing-caused crystallinity change contributes to the variation of the switching behaviors of the WO3 thin films. The as-deposited WO3 films with low crystalline structure are preferred for random Ag conducting path, resulting in large switching ratio but fluctuating I–V hysteresis, whereas the annealed WO3 films with crystallized compact structure limits Ag conducting path, favoring the stable I–V hysteresis but small switching ratio. It is therefore concluded that electrochemical redox reaction-controlled resistance switching depends not only on electrode materials (inert and reactive electrodes) but also on crystallinity of host oxide.  相似文献   
98.
99.
The spin chain systems with one-dimensional magnetic ordering are promising candidates for quantum optical devices. This paper shows how the optical excitation can induce various phonon modes in an ideal Cu-O chain at various lengths. The calculation was carried out at different level theories including configuration interaction singles for excited states, density functional theory and second-order Möller-Plesset perturbation. In general, the number of modes increases with chain length due to growing asymmetry of atomic positions when chain exceeds 5 nm. There were, however, only two basic modes: one is associated with the symmetric oscillation of oxygen and another with the asymmetric motion of the same along the chain. At the length below 4.3 nm, the Raman activity of the symmetric mode (440 cm−1) dominates. From analysis of density of states, this mode may be associated with the excitation across the lowest LUMO bands with changing in spin state.  相似文献   
100.
Four new monomers, 3‐(N‐methylacrylamido)propylidenebisphosphonic acid, 3‐(N‐propyl‐acrylamido)propylidenebisphosphonic acid, 3‐(N‐hexylacrylamido)propylidenebisphosphonic acid, and 3‐(N‐octylacrylamido)propylidenebisphosphonic acid, have been synthesized in good yields and fully characterized by 1H, 13C, 31P NMR, and HRMS. The copolymerization of these monomers with N,N′‐diethyl‐1,3‐bis(acrylamido)propane (DEBAAP) has been investigated with differential scanning calorimetry. These mixtures show a higher reactivity than DEBAAP. New self‐etch dental primers, based on these acrylamide monomers, have been formulated. Dentin shear bond strength measurements have shown that primers based on these bisphosphonic acids assure a strong bond between the tooth substance and a dental composite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5258–5271, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号