首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
化学   30篇
晶体学   6篇
数学   7篇
物理学   18篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1998年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1974年   2篇
  1970年   2篇
  1969年   3篇
  1941年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
41.
Flow-mode or stream-processing digital systems have been proposed in which code, control and data are constantly moving so that multiple instructions are processed concurrently. We show the design of a flow-mode cellular array processor which can perform a number of two's complement fixed-point arithmetic operations. These operations are: three operand addition and/or subtraction, two operand multiplication and vector inner-product. Operand sizes are: 2N bit for addition and subtraction operands, andN bit for multiplication operands. Results are 2N bit. The network can simultaneously operate on 4N+2 datasets with any mix of the above operations being handled. The processor is based on the use of asynchronous cellular arrays. Given a continued flow of input datasets, the effective computation time is worst-case propagation time within one cell. A typical cell contains a 1-bit position 3-input full adder with associated input data storage. Thus the effective computation time is independent of the operand bit length.  相似文献   
42.
Solid‐state protonated and N,O‐deuterated Fourier transform infrared (IR) and Raman scattering spectra together with the protonated and deuterated Raman spectra in aqueous solution of the cyclic di‐amino acid peptide cyclo(L ‐Asp‐L ‐Asp) are reported. Vibrational band assignments have been made on the basis of comparisons with previously cited literature values for diketopiperazine (DKP) derivatives and normal coordinate analyses for both the protonated and deuterated species based upon DFT calculations at the B3‐LYP/cc‐pVDZ level of the isolated molecule in the gas phase. The calculated minimum energy structure for cyclo(L ‐Asp‐L ‐Asp), assuming C2 symmetry, predicts a boat conformation for the DKP ring with both the two L ‐aspartyl side chains being folded slightly above the ring. The CO stretching vibrations have been assigned for the side‐chain carboxylic acid group (e.g. at 1693 and 1670 cm−1 in the Raman spectrum) and the cis amide I bands (e.g. at 1660 cm−1 in the Raman spectrum). The presence of two bands for the carboxylic acid CO stretching modes in the solid‐state Raman spectrum can be accounted for by factor group splitting of the two nonequivalent molecules in a crystallographic unit cell. The cis amide II band is observed at 1489 cm−1 in the solid‐state Raman spectrum, which is in agreement with results for cyclic di‐amino acid peptide molecules examined previously in the solid state, where the DKP ring adopts a boat conformation. Additionally, it also appears that as the molecular mass of the substituent on the Cα atom is increased, the amide II band wavenumber decreases to below 1500 cm−1; this may be a consequence of increased strain on the DKP ring. The cis amide II Raman band is characterized by its relatively small deuterium shift (29 cm−1), which indicates that this band has a smaller N H bending contribution than the trans amide II vibrational band observed for linear peptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
43.
The development of cost-effective methodologies for the precise nanometer-scale positioning of biomolecules permits the low-cost production of various biofunctional devices for a range of biomedical and nanotechnological applications. By combining colloidal lithography and the mussel-inspired multifunctional polydopamine coating, we present a novel parallel benchtop method that allows rapid nanoscale patterning of proteins without the need for electrically powered equipment in the fabrication process. The PDA-immobilized binary nanopattern consisting of BSA surrounded by PLL-g-PEG is fabricated over a large area, and the integrity of the pattern is confirmed using AFM and FM.  相似文献   
44.
Raman and infrared spectra are reported for rhodanine, 3‐aminorhodanine and 3‐methylrhodanine in the solid state. Comparisons of the spectra of non‐deuterated/deuterated species facilitate discrimination of the bands associated with N H, NH2, CH2 and CH3 vibrations. DFT calculations of structures and vibrational spectra of isolated gas‐phase molecules, at the B3‐LYP/cc‐pVTZ and B3‐PW91/cc‐pVTZ level, enable normal coordinate analyses in terms of potential energy distributions for each vibrational normal mode. The cis amide I mode of rhodanine is associated with bands at ∼1713 and 1779 cm−1, whereas a Raman and IR band at ∼1457 cm−1 is assigned to the amide II mode. The thioamide II and III modes of rhodanine, 3‐aminorhodanine and 3‐methylrhodanine are observed at 1176 and 1066/1078; 1158 and 1044; 1107 and 984 cm−1 in the Raman and at 1187 and 1083; 1179 and 1074; 1116 and 983 cm−1 in the IR spectra, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
45.
Abstract  Rhodanines (2-thio-4-oxothiazolidines) are synthetic small molecular weight organic molecules with diverse applications in biochemistry, medicinal chemistry, photochemistry, coordination chemistry and industry. The X-ray crystal structure determination of two rhodanine derivatives, namely (I), 3-aminorhodanine [3-amino-2-thio-4-oxothiazolidine], C3H4N2OS2, and (II) 3-methylrhodanine [3-methyl-2-thio-4-oxothiazolidine], C4H5NOS2, have been conducted at 100 K. I crystallizes in the monoclinic space group P21/n with unit cell parameters a = 9.662(2), b = 9.234(2), c = 13.384(2) ?, β = 105.425(3)°, V = 1151.1(3) ?3, Z = 8 (2 independent molecules per asymmetric unit), density (calculated) = 1.710 mg/m3, absorption coefficient = 0.815 mm−1. II crystallizes in the orthorhombic space group Iba2 with unit cell a = 20.117(4), b = 23.449(5), c = 7.852(2) ?, V = 3703.9(12) ?3, Z = 24 (three independent molecules per asymmetric unit), density (calculated) = 1.584 mg/m3, absorption coefficient 0.755 mm−1. For I in the final refinement cycle the data/restraints /parameter ratios were 2639/0/161, goodness-of-fit on F2 = 0.934, final R indices [I > 2sigma(I)] were R1 = 0.0299, wR2 = 0.0545 and R indices (all data) R1 = 0.0399, wR2 = 0.0568. The largest difference peak and hole were 0.402 and −0.259 e ?−3. For II in the final refinement cycle the data/restraints/parameter ratios were 3372/1/221, goodness-of-fit on F2 = 0.950, final R indices [I > 2sigma(I)] were R1 = 0.0407, wR2 = 0.1048 and R indices (all data) R1 = 0.0450, wR2 = 0.1088. The absolute structure parameter = 0.19(9) and largest difference peak and hole 0.934 and −0.301 e ?−3. Details of the geometry of the five molecules (two for I and three for II) and the crystal structures are fully discussed. Corresponding features of the molecular geometry are highly consistent and firmly establish the geometry of the rhodanine ring. Index Abstract  Low temperature X-ray structures of (I) 3-aminorhodanine [3-amino-2-thio-4-oxothiazolidine] and (II) 3-methylrhodanine3-methyl-2-thio-4-oxothiazolidine are presented. Crystals of I are monoclinic and occupy space group P21/n with eight molecules (2 per asymmetric unit cell) and (II) is orthorhombic in space group Iba2 with 24 molecules (3 per asymmetric unit). This study has provided five highly consistent copies of the rhodanine ring at high resolution thus enabling its geometry to be established with confidence. The two independent molecules in the asymmetric unit of 3-aminorhodanine (left) and the three independent molecules in the asymmetric unit of 3-methylrhodanine (right) showing space filling and van der Waals contacts (drawn with MERCURY [Bruno et al. Acta Cryst B58:389, 2002]).  相似文献   
46.
Solid-state IR and Raman as well as aqueous solution state Raman spectra are reported for urazole, 4-methylurazole and their deuterated derivatives. DFT calculations, at the B3-LYP/cc-pVTZ level, established that the structures and vibrational spectra of the molecules can be interpreted using models with hydrogen-bonded water molecules, in conjunction with the polarizable continuum solvation method. The vibrational spectra were computed at the optimised molecular geometry in each case, enabling normal coordinate analysis, which yielded satisfactory agreement with the experimental IR and Raman data. Computed potential energy distributions of the normal modes provided detailed vibrational assignments. Solid-state pseudopotential-plane-wave DFT calculations, using the PW91 functional were also carried out, reflecting the importance of intermolecular hydrogen bonding in the solid state.  相似文献   
47.
2,6‐Divinylpyridine‐appended anthracene derivatives flanked by two alkyl chains at the 9,10‐position of the core have been designed, synthesized, and characterized by NMR, MALDI‐TOF, FTIR, and single‐crystal XRD. These anthracene derivatives are able to recognize picric acid (2,4,6‐trinitrophenol, PA) selectively down to parts per billion (ppb) level in aqueous as well as nonaqueous medium. Fluorescence emission of these derivatives in solution is significantly quenched by adding trace amounts of PA, even in the presence of other competing analogues, such as 2,4‐dinitrophenol (2,4‐DNP), 4‐nitrophenol (NP), nitrobenzene (NB), benzoic acid (BA), and phenol (PH). The high sensitivity of these derivatives toward PA is considered as a combined effect of the proton‐induced intramolecular charge transfer (ICT) as well as electron transfer from the electron‐rich anthracene to the electron‐deficient PA. Moreover, visual detection of PA has been successfully demonstrated in the solid state by using different substrates.  相似文献   
48.
The behaviour of electronic Raman scattering, excited under resonance conditions, is discussed in relation to molecular properties of the ground electronic state, the resonant excited state and the final electronic state. It is shown how the intensity distribution within vibronically structured electronic Raman bands depends on differences of molecular geometry and force field between these states.  相似文献   
49.
50.
The geometries of HOOH, CH3OOH, and CH3OOCH3, were optimized with different basis sets (3-21G, 6-31G*(*) and D95**) at different levels of theory (HF, MP2, MP4, and CI). HF/3-21G optimizations result in planar trans conformations for all three peroxides. HF/6-31G** calculations predict skew conformations for HOOH and CH3OOH, but a planar trans struture for CH3OOCH3. For the larger basis set the calculated bond lengths, especially the O-O bonds, are too short. Optimizations for HOOH including electron correlation at the MP2, MP3, MP4, CI, and CCD level improve the agreement for bond lengths and the OOH angle, but result in dihedral angles Which are too large by 3– 8°. In the case of CH3OOCH3, similar calculations at the MP2 and CI level predict planar trans structures instead of the experimentally observed skew conformation. On the other hand, MP4 single point calculations at MP2 optimized parameters result in a correct skew structure. For all three peroxides a computationally “economic” method, i.e., single point calculations at MP2 or MP4 level with HF/3-21G optimized parameters, result in close agreement between calculated and experimental structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号