首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   41篇
  国内免费   8篇
化学   420篇
晶体学   3篇
力学   36篇
数学   114篇
物理学   105篇
  2023年   5篇
  2022年   11篇
  2021年   35篇
  2020年   20篇
  2019年   11篇
  2018年   12篇
  2017年   13篇
  2016年   31篇
  2015年   24篇
  2014年   20篇
  2013年   45篇
  2012年   51篇
  2011年   58篇
  2010年   32篇
  2009年   24篇
  2008年   41篇
  2007年   41篇
  2006年   38篇
  2005年   25篇
  2004年   17篇
  2003年   39篇
  2002年   12篇
  2001年   9篇
  2000年   4篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1988年   6篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1979年   4篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1923年   1篇
排序方式: 共有678条查询结果,搜索用时 31 毫秒
671.
In the present review the findings concerning the effect of nanofillers to biodegradation and enzymatic hydrolysis of aliphatic polyesters were summarized and discussed. Most of the published works are dealing with the effect of layered silicates such as montmorillonite (unmodified and modified with organic compounds), carbon nanotubes and spherical shape additives like SiO2 and TiO2. The degradation of polyester due to the enzymatic hydrolysis is a complex process involving different phenomena, namely, water absorption from the polyesters, enzymatic attack to the polyester surface, ester cleavage, formation of oligomer fragments due to endo- or exo-type hydrolysis, solubilization of oligomer fragments in the surrounding environment, diffusion of soluble oligomers by bacteria and finally consumption of the oligomers and formation of CO2 and H2O. By studying the published works in nanocomposites, different and sometimes contradictory results have been reported concerning the effect of the nanofillers on aliphatic polyesters biodegradation. Most of the papers suggested that the addition of nanofillers provokes a substantial enhancement of polyester hydrolysis due to the catalyzing effect of the existed reactive groups (–OH and –COOH), to the crystallinity decrease, to the higher hydrophilicity of nanofillers and thus higher water uptake, to the higher interactions, etc. However, there are also some papers that suggested a delay effect of nanofillers to the polyesters degradation mainly due to the barrier effect of nanofillers and the lower available surface for enzymatic hydrolysis.  相似文献   
672.
Carbon black nanopowders were produced using two thermal plasma processes based on DC, respectively ICP plasma torches. Although the produced particles were in the nanometer size range, the values obtained for the surface area of the particles using a Brunauer Emmett Teller technique were very small. This indicated the presence of contaminants in the experimental powders, as confirmed by Raman spectroscopy and Thermogravimetric Analysis. A thermal treatment process was developed in order to extract these volatile compounds, which were then identified using a Gas Chromatography—Mass Spectrometry method. The experimental powders were analyzed using Scanning and Transmission Electron Microscopy, X-Ray Diffraction and Raman Spectroscopy before and after the thermal treatment in order to determine the effect of the heat treatment on the powder structural properties.  相似文献   
673.
Liposomes, or vesicles, have been studied extensively both as models of biological membranes and as drug delivery vehicles. Typically it is assumed that all liposomes within the same preparation are identical. Here by employing pairs of fluorescently labeled lipids we demonstrated an up to 10-fold variation in the relative lipid composition of individual liposomes with diameters between 50 nm and 15 μm. Since the physicochemical properties of liposomes are directly linked to their composition, a direct consequence of compositional inhomogeneities is a polydispersity in the properties of the individual liposomes in an ensemble.  相似文献   
674.
Considerable attention has recently focused on gravity theories obtained by extending general relativity with additional scalar, vector, or tensor degrees of freedom. In this Letter, we show that the black-hole solutions of these theories are essentially indistinguishable from those of general relativity. Thus, we conclude that a potential observational verification of the Kerr metric around an astrophysical black hole cannot, in and of itself, be used to distinguish between these theories. On the other hand, it remains true that detection of deviations from the Kerr metric will signify the need for a major change in our understanding of gravitational physics.  相似文献   
675.
Two Gadolinium nanostructured materials, Gd2(OH)5NO3 nanoparticles and Gd(OH)3 nanorods, were synthesized and extensively characterized by various techniques. In addition to the potential use of Gd2(OH)5NO3 in magnetic resonance imaging (MRI) and Neutron-capture therapy (NCT) application, it could also be used in targeted drug delivery. An antibiotic (nalidixic acid), two amino acids (aspartic and glutamic acid), a fatty acid and a surfactant (SDS) were intercalated in the nanoparticles. The surface of the nanoparticles was modified with folic acid in order to be capable of targeted delivery to folate receptor expressing sites, such as tumor human cells.  相似文献   
676.
Metformin (N,N-dimethylguanylguanidine) is one of the most prescribed drugs with pleiotropic, exerted in part by not fully elucidated mechanisms of action. We developed and validated a gas chromatography–mass spectrometry (GC–MS) method for the quantitative analysis of metformin (metformin-d0) in 10-µL aliquots of human serum and urine using N,N-[dimethylo-2H6]guanylguanidine (metformin-d6) as the internal standard. The method involves evaporation of the samples to dryness, derivatization with pentafluoropropionic (PFP) anhydride in ethyl acetate (30 min, 65 °C), and extraction into toluene. The negative-ion chemical ionization GC–MS spectra of the PFP derivatives contain a single intense ion with mass-to-charge (m/z) ratios of m/z 383 for metformin-d0 and m/z 389 for metformin-d6. Our results suggest that all amine/imine groups of metformin-d0 and metformin-d6 are converted to their N,N,N-tripentafluoropropionyl derivatives, which cyclize to form a symmetric triazine derivative, of which the non-ring amine group is amidated. Quantification was performed by selected-ion monitoring (SIM) of m/z 383 and m/z 389. Upon validation, the method was applied to determine serum and urine metformin concentrations in 19 patients with Becker muscular dystrophy (BMD). Serum and urine samples were collected at baseline (Visit I), after six weeks of supplementation (Visit II) with metformin (3 × 500 mg/d; metformin group; n = 10) or l-citrulline (3 × 1500 mg/d; citrulline group; n = 9) followed by a six-week supplementation with 3 × 500 mg/d of metformin plus 3 × 1500 mg/d l-citrulline. At Visit I, the metformin concentration in the serum and urine was very low in both groups. The metformin concentrations in the serum and urine of the patients who first took metformin (MET group) were higher at Visit II and Visit III. The metformin concentration in the serum and urine samples of the patients who first took l-citrulline (CITR group) were higher at Visit III. The serum and urine concentrations of metformin were insignificantly lower in the CITR group at Visit III. The mean fractional excretion (FE) rate of metformin was 307% (Visit II) and 322% (Visit III) in the MET group, and 290% in the CITR group (Visit III). This observation suggests the accumulation of metformin in the kidney and its secretion in the urine. The GC–MS is suitable to measure reliably circulating and excretory metformin in clinical settings.  相似文献   
677.
Anatase TiO2 is a promising material for Li-ion (Li+) batteries with fast charging capability. However, Li+ (de)intercalation dynamics in TiO2 remain elusive and reported diffusivities span many orders of magnitude. Here, we develop a smart protocol for scanning electrochemical cell microscopy (SECCM) with in situ optical microscopy (OM) to enable the high-throughput charge/discharge analysis of single TiO2 nanoparticle clusters. Directly probing active nanoparticles revealed that TiO2 with a size of ≈50 nm can store over 30 % of the theoretical capacity at an extremely fast charge/discharge rate of ≈100 C. This finding of fast Li+ storage in TiO2 particles strengthens its potential for fast-charging batteries. More generally, smart SECCM-OM should find wide applications for high-throughput electrochemical screening of nanostructured materials.  相似文献   
678.
Photosystem-II (PSII) is a multi-subunit protein complex that harvests sunlight to perform oxygenic photosynthesis. Initial light-activated charge separation takes place at a reaction centre consisting of four chlorophylls and two pheophytins. Understanding the processes following light excitation remains elusive due to spectral congestion, the ultrafast nature, and multi-component behaviour of the charge-separation process. Here, using advanced computational multiscale approaches which take into account the large-scale configurational flexibility of the system, we identify two possible primary pathways to radical-pair formation that differ by three orders of magnitude in their kinetics. The fast (short-range) pathway is dominant, but the existence of an alternative slow (long-range) charge-separation pathway hints at the evolution of redundancy that may serve other purposes, adaptive or protective, related to formation of the unique oxidative species that drives water oxidation in PSII.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号