首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
化学   11篇
数学   1篇
物理学   20篇
  2019年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   5篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
21.
This article presents the changes in the thermal properties of the control and titanium dioxide (TiO2), both nano and bulk exposed Zebrafish bones by using thermo analytical techniques. The result shows that the mass loss due to the thermal decomposition occurs in three distinct steps due to loss of water, organic and inorganic materials. The titanium dioxide exposed bones present a different thermal behaviour compared to the control bones. The residue masses are found to be increased due to titanium dioxide exposure. In particular, nano titanium dioxide exposure increases the residue mass level significantly (three fold) when compared to titanium dioxide bulk exposure. These thermal characteristics can be used as a qualitative method to check the metal oxide intoxication in biological samples.  相似文献   
22.
The European Physical Journal E - Using three different quasielastic neutron spectrometers with widely different resolutions, we have been able to study the microscopic translational and rotational...  相似文献   
23.

Background  

Our group previously demonstrated that a DNA plasmid encoding the mycobacterial 65-kDa heat shock protein (DNA-HSP65) displayed prophylactic and therapeutic effect in a mice model for tuberculosis. This protection was attributed to induction of a strong cellular immunity against HSP65. As specific immunity to HSP60 family has been detected in arthritis, multiple sclerosis and diabetes, the vaccination procedure with DNA-HSP65 could induce a cross-reactive immune response that could trigger or worsen these autoimmune diseases.  相似文献   
24.
Marine molluscs have long been recognised as potential records of palaeoclimate change using the patterns and differences in the stable isotopic composition of the carbonate shells. The aim of this study is to improve the robustness of this approach for aragonitic molluscs by completing the first experimental calibration of the fractionation between water and biogenic aragonite. Fractionation factors were calibrated by growing specimens of the freshwater mollusc Lymnaea peregra under controlled conditions of water temperature and isotopic composition. Fifteen populations of L. peregra were maintained at constant temperature and isotopic conditions for five months (at five different temperatures and using three different water compositions). Water samples and temperature measurements were taken regularly throughout the experiment. The temperature dependence of the fractionation factor, between 8 and 24 degrees C, is given by: 1000 ln alpha=16.74x(1000T(-1))-26.39 (T in Kelvin) and the relationship between temperature (T), delta(18)O(carb) and delta(18)O(wat) is given by: T=21.36-4.83xdelta(+ degrees )O(carb)-delta(+ degrees )O(wat) (T is in degrees C, delta(18)O(carb) is with respect to Vienna Pee Dee Belemnite (PDB), the International Atomic Energy Agency (IAEA) replacement standard for PDB, and delta(18)O(wat) is with respect to Vienna standard mean ocean water (VSMOW)) The outcome of the controlled experiment is compared with previous studies on synthetic, and biogenic, calcite and aragonite from field and laboratory investigations. These comparisons suggest that although a vital offset exists between the fractionation of isotopes in synthetic and biogenic aragonite for molluscs in general, there is no vital effect that is specific either to freshwater, or to individual, genera. Therefore, the calibrated relationship may be used for any freshwater or marine mollusc to derive palaeotemperatures providing the isotopic composition of the environmental water can be reliably constrained. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
25.
Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of approximately 0.1-4 ns. We present evidence that these relatively slow motions are observable by high-energy-resolution quasielastic neutron scattering (QNS) thus demonstrating QNS as a technique, complementary to nuclear magnetic resonance, for studying conformational dynamics on a nanosecond time scale in molecular monolayers.  相似文献   
26.
Vibrational spectra of oligothiophenes with structural defects are calculated within the density-functional-theory methodology. The effects of the defective αβ linkages on the infrared (IR) and Raman spectra are characterized from calculations of all isomers up to the hexamer. The signatures of αβ linked monomers can be found in IR spectra from broken symmetry arguments which result in absorptions localized in the defective region. The positions of the absorption peaks in the Raman spectra seem to be unaffected by the presence of such defects; however, strong reductions in the intensities are observed because of the shortening of the conjugation length.  相似文献   
27.
ABSTRACT

Arsenic is a toxic heavy metal that occurs naturally in water, soil, and air. It is widespread in the environment as a consequence of both anthropogenic and natural processes. In the current study, an attempt has been made to analyze the arsenic-induced molecular changes in macromolecular components like proteins and lipids in the kidney tissues of edible fish Labeo rohita using Fourier transform infrared (FTIR) spectroscopy. The FTIR spectrum of kidney tissue is quite complex and contains several bands arising from the contribution of different functional groups. The detailed spectral analyses were performed in three distinct wave number regions, namely 3600–3050 cm?1, 3050–2800 cm?1, and 1800–800 cm?1. The current study shows that the kidney tissues are more vulnerable to arsenic intoxication. FTIR spectra reveal significant differences in both absorbance intensities and areas between control and arsenic-intoxicated kidney tissues; this result indicates that arsenic intoxication induces significant alteration on the major biochemical constituents such as lipids and proteins and leads to compositional and structural changes in kidney tissues at the molecular level. The current study confirms that FTIR spectroscopy can be successfully applied to toxicologic and biological studies.  相似文献   
28.
Arsenic compounds are ubiquitous and widespread in the environment as a result of natural or anthropogenic occurrence. Fish are the major source of protein for human consumption. They are also a source of contamination, because of the amounts of heavy elements they can contain, some of which are highly toxic. Fish bones are high in calcium, which is an essential mineral for normal body function. It consists of water, organic material, and mineral matter. Chelating agents have been used clinically as antidotes for acute and chronic metal intoxications. In the present study, an attempt is made to investigate the bio-accumulation of arsenic and its effect on the biochemical and mineral contents of Labeo rohita bones using, Fourier transform infrared (FT-IR) spectroscopy. The results of the present study indicate that arsenic exposure induces significant reduction on the biochemical and mineral contents of the L. rohita bones. Further, the DMSA treatment significantly improves these levels. This shows that DMSA is an effective chelator for arsenic toxicity. Quantitative curve-fitting analyses of amide I band have proved useful in studying the nature and the extent of protein conformational changes. A decrease in α-helical and random coil structures and an increase in β-sheet structures have been observed due to arsenic exposure. In conclusion, the present study shows that the FT-IR spectroscopy coupled with second derivative and curve-fitting analysis gives useful information about the biochemical and mineral contents of the L. rohita bones.  相似文献   
29.
Zinc is an essential metal for different physiological functions and becomes toxic when elevated concentrations are introduced into the environment. In the present study, an attempt is made to analyze zinc-induced biochemical changes in the liver tissues of freshwater fingerlings of Labeo rohita using Fourier Transformation Infrared Spectroscopy. Several important features have been observed in the FTIR spectra of zinc-intoxicated liver tissues, namely, altered membrane lipid, altered protein profile, and increased glycogen content, indicating an alteration in the lipid and protein profiles leading to modification in membrane composition. Further, it is observed that acute exposure to zinc causes some alteration in protein profile with a decrease in α-helix and an increase in random coil structure. Treatment with the chelating agent D-penicillamine reduces the biochemical contents in the liver tissues. This shows that D-penicillamine is a good antidote for zinc toxicity. Published in Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 5, pp. 746–752, September–October, 2008.  相似文献   
30.
Methyl group dynamics of m-xylene was investigated by using incoherent inelastic and quasi-elastic neutron scattering. Inelastic measurements were carried out at the high flux backscattering spectrometer HFBS at the National Institute of Standards, quasi-elastic measurements at the time-of-flight spectrometer NEAT at the Hahn-Meitner-Institute. Rotational potentials are derived which describe the tunnel splittings, first librational, and activation energies of the two inequivalent CH(3) groups. Indications for coupling of the methyl rotation to low-energy phonons have been found. The finite width of one tunneling transition at He temperature is described by direct methyl-methyl coupling. The combined results of the experiments and the calculations allow a unique assignment of rotor excitations to crystallographic sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号