首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
  国内免费   1篇
化学   25篇
数学   2篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
  1996年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
21.
Protein phosphorylation is one of the most important post-translational modifications. Phosphorylated peptides are present in low abundance in blood serum but play a vital role in regulatory mechanisms and may serve as casual factors in diseases. The enrichment and analysis of phosphorylated peptides directly from human serum and mapping the phosphorylation sites is a challenging task. Versatile nanocomposites of different materials have been synthesized using simple but efficient methodologies for their enrichment. The nanocomposites include magnetic, coated, embedded as well as chemically derivatized materials. Different base materials such as polymers, carbon based and metal oxides are used. The comparison of nanocomposites with respective nanoparticles provides sufficient facts about their efficiency in terms of loading capacity and capture efficiency. The cost for preparing them is low and they hold great promise to be used as chromatographic materials for phosphopeptide enrichment. This review gives an overview of different nanocomposites in phosphoproteomics, discussing the improved efficiency than the individual counterparts and highlighting their significance in phosphopeptide enrichment.  相似文献   
22.
This paper first deals with the screening and optimization of Fe(III)-based adsorbents for arsenic adsorption from 0.2 to 16 ppm test solutions of arsenite/arsenate. The best adsorption capacity has been reported on alpha-FeO(OH) on an adsorbent weight basis. Better results were found on intercalated Fe-montmorillonites for arsenite adsorption below the equilibrium dissolved As concentration of 310 ppb and for arsenate adsorption in all of the concentrations studied. Next, the speciation of As adsorbed was performed by As K-edge x-ray absorption fine structure (XAFS) combined with high-energy-resolution fluorescence spectrometry. Major oxidative adsorption of arsenite was observed on Fe-montmorillonite from the 0.2-16 ppm test solutions. The reasons for the higher capacity of arsenic adsorption and oxidative adsorption of arsenite on Fe-montmorillonite are discussed.  相似文献   
23.
24.
Determination of the availability of phases for specific separations is an important task achieved by a separation chemist. This becomes vital when the complex samples like biofluids are dealt with in proteome science. The work presented here involves the synthesis and application of terpolymeric sorbent with different functionalizations adopted for the selective enrichment of biomolecules of interest from biological fluids. Synthesis of terpolymer was carried out by the radical polymerization of monomers: methyl acrylate, acrylic acid and vinyl acetate with diethylene glycol dimethacrylate as cross‐linking agent, benzoyl peroxide as initiator and chloroform as a porogenic solvent. Characterization was done through Fourier transform infrared spectroscopy, scanning electron microscopy and nitrogen adsorption porosimetry. The polymer was further modified to immobilized metal ion affinity chromatographic material, with immobilized Fe3+/La3+ ions that allowed phosphopeptide enrichment from tryptic digests of standard proteins as well as milk, egg yolk and human serum. Sensitivity of enrichment down to 50 fmol was achieved in the presence of complex protein background as bovine serum albumin. Hydrophobicity was introduced through octadecyl amine, which provides comparable results to ZipTip C18/C4 for desalting of complex mixtures of all caseins. Analysis of the enriched content was performed by Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI‐MS). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
25.
Applied Biochemistry and Biotechnology - Prostate cancer is one of the major causes of cancer-related deaths in men and there is a growing interest in identifying natural compounds for its...  相似文献   
26.
Furfural is one of the most promising precursor chemicals with an extended range of downstream derivatives. In this work, conversion of xylose to produce furfural was performed by employing p-toluenesulfonic acid (pTSA) as a catalyst in DMSO medium at moderate temperature and atmospheric pressure. The production process was optimized based on kinetic modeling of xylose conversion to furfural alongwith simultaneous formation of humin from xylose and furfural. The synergetic effects of organic acids and Lewis acids were investigated. Results showed that the catalyst pTSA-CrCl3·6H2O was a promising combined catalyst due to the high furfural yield (53.10%) at a moderate temperature of 120 °C. Observed kinetic modeling illustrated that the condensation of furfural in the DMSO solvent medium actually could be neglected. The established model was found to be satisfactory and could be well applied for process simulation and optimization with adequate accuracy. The estimated values of activation energies for xylose dehydration, condensation of xylose, and furfural to humin were 81.80, 66.50, and 93.02 kJ/mol, respectively.  相似文献   
27.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号